HDOJ/HDU 1015 Safecracker(深搜)

本文介绍了一种解决Klein保险箱组合问题的算法。Klein保险箱使用字母而非数字的组合锁,并在门上刻有包含组合线索的引语。文章通过一个具体的例子展示了如何寻找正确的组合,并提供了一个Java实现的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description
=== Op tech briefing, 2002/11/02 06:42 CST ===
“The item is locked in a Klein safe behind a painting in the second-floor library. Klein safes are extremely rare; most of them, along with Klein and his factory, were destroyed in World War II. Fortunately old Brumbaugh from research knew Klein’s secrets and wrote them down before he died. A Klein safe has two distinguishing features: a combination lock that uses letters instead of numbers, and an engraved quotation on the door. A Klein quotation always contains between five and twelve distinct uppercase letters, usually at the beginning of sentences, and mentions one or more numbers. Five of the uppercase letters form the combination that opens the safe. By combining the digits from all the numbers in the appropriate way you get a numeric target. (The details of constructing the target number are classified.) To find the combination you must select five letters v, w, x, y, and z that satisfy the following equation, where each letter is replaced by its ordinal position in the alphabet (A=1, B=2, …, Z=26). The combination is then vwxyz. If there is more than one solution then the combination is the one that is lexicographically greatest, i.e., the one that would appear last in a dictionary.”

v - w^2 + x^3 - y^4 + z^5 = target

“For example, given target 1 and letter set ABCDEFGHIJKL, one possible solution is FIECB, since 6 - 9^2 + 5^3 - 3^4 + 2^5 = 1. There are actually several solutions in this case, and the combination turns out to be LKEBA. Klein thought it was safe to encode the combination within the engraving, because it could take months of effort to try all the possibilities even if you knew the secret. But of course computers didn’t exist then.”

=== Op tech directive, computer division, 2002/11/02 12:30 CST ===

“Develop a program to find Klein combinations in preparation for field deployment. Use standard test methodology as per departmental regulations. Input consists of one or more lines containing a positive integer target less than twelve million, a space, then at least five and at most twelve distinct uppercase letters. The last line will contain a target of zero and the letters END; this signals the end of the input. For each line output the Klein combination, break ties with lexicographic order, or ‘no solution’ if there is no correct combination. Use the exact format shown below.”

Sample Input
1 ABCDEFGHIJKL
11700519 ZAYEXIWOVU
3072997 SOUGHT
1234567 THEQUICKFROG
0 END

Sample Output
LKEBA
YOXUZ
GHOST
no solution

上个我用枚举做了,感觉不怎么好,毕竟是练算法的,就试试了深搜。
题意:
给你一个数,再给一个全部是大写字母构成的字符串。
从里面选5个字母v,m,x,y,z(不重复),计算v-m^2+x^3-y^4+z^4是否等于目标值
选出来的方案可能有很多种,那么你应该选择字典序最大的那种。

import java.util.Arrays;
import java.util.Scanner;

public class Main {
    static char handle[] = new char[6];
    static char at[]={' ','A','B','C','D','E','F','G','H','I','J'
            ,'K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z'};
    static char chs[];
    static int target;
    static String str;
    static boolean map[];//标识是否已经用了
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        //for(int i='A';i<='Z';i++){
            //char c = (char)i;
            //System.out.print("'"+c+"',");
        //}
        while(sc.hasNext()){
            target = sc.nextInt();
            str = sc.next();
            if(target==0&&str.equals("END")){
                return;
            }
            map = new boolean[str.length()];
            chs = str.toCharArray();
            Arrays.sort(chs);
            for(int i=0,j=chs.length-1;i<chs.length/2;i++,j--){
                char c=chs[i];
                chs[i]=chs[j];
                chs[j]=c;
            }

            if(dfs(0)){
                for(int i=0;i<5;i++){
                    System.out.print(handle[i]);
                }
                System.out.println();
            }else{
                System.out.println("no solution");
            }


        }
    }
    private static boolean dfs(int m) {
        if(m==5){
            if( res(handle[0],handle[1],handle[2],handle[3],handle[4]) ){
                return true;
            }
            return false;
        }else{
            for(int i=0;i<str.length();i++){
                if(!map[i]){
                    map[i]=true;
                    handle[m]=chs[i];
                    if(dfs(m+1)){
                        return true;
                    }
                    map[i]=false;
                }
            }
        }

        return false;
    }
    private static boolean res(char a, char b, char c, char d, char e) {
        int ap[] = new int[5];
        for(int j=0;j<ap.length;j++){
            for(int i=1;i<at.length;i++){
                if(j==0){
                    if(a==at[i]){
                        ap[0]=i;
                        break;
                    }
                }else
                if(j==1){
                    if(b==at[i]){
                        ap[1]=i;
                        break;
                    }
                }else
                if(j==2){
                    if(c==at[i]){
                        ap[2]=i;
                        break;
                    }
                }else
                if(j==3){
                    if(d==at[i]){
                        ap[3]=i;
                        break;
                    }
                }else
                if(j==4){
                    if(e==at[i]){
                        ap[4]=i;
                        break;
                    }
                }
            }
        }

        int sum=0;
        for(int i=0;i<ap.length;i++){
            if(i%2==0){
                sum+=Math.pow(ap[i], i+1);
            }else{
                sum-=Math.pow(ap[i], i+1);
            }
        }
        if(sum==target){
            return true;
        }else{
            return false;
        }
    }
}

转载于:https://www.cnblogs.com/webmen/p/5739128.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值