原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ185.html
题解
首先暴力DP是 $O(3^nn^3)$ 的,大家都会。
我们换个方向考虑。
假设我们求的是树上每一个节点到图上的节点的映射,而且图上的一个点可以被树上多个点映射到,那么就是求图上所有点都被映射到至少一次的方案数。
我们发现保证所有点都被映射到会很麻烦,所以我们考虑容斥。
枚举哪些点一定没有被映射到,答案就是至少0个点没被映射到的 - 至少1个点的 + 至少2个点的 ……
已经确定哪些点没有被映射到之后就好办了,设 $dp[i][j]$ 表示树上节点 $i$ 对应图上节点 $j$ 时,子树 $i$ 的方案数。
转移比较容易想到,不说了。
时间复杂度 $O(2^n n^3)$ 。
代码
#include <bits/stdc++.h>
#define clr(x) memset(x,0,sizeof (x))
using namespace std;
typedef long long LL;
LL read(){
LL x=0,f=0;
char ch=getchar();
while (!isdigit(ch))
f|=ch=='-',ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return f?-x:x;
}
const int N=20;
int n,m;
vector <int> e[N];
int g[N][N],f[N];
LL dp[N][N];
int cnt1(int x){
int ans=0;
while (x)
x-=x&-x,ans++;
return ans;
}
void dfs(int x,int pre){
for (int i=1;i<=n;i++)
if (!f[i])
dp[x][i]=1;
for (auto y : e[x])
if (y!=pre){
dfs(y,x);
for (int i=1;i<=n;i++)
if (!f[i]){
LL tot=1;
for (int j=1;j<=n;j++)
if (!f[j]&&g[i][j])
tot+=dp[y][j];
dp[x][i]*=tot;
}
}
}
int main(){
n=read(),m=read();
for (int i=1;i<=m;i++){
int x=read(),y=read();
g[x][y]=g[y][x]=1;
}
for (int i=1;i<n;i++){
int x=read(),y=read();
e[x].push_back(y);
e[y].push_back(x);
}
LL ans=0;
for (int i=0;i<(1<<n);i++){
clr(f);
LL c=(cnt1(i)&1)?-1:1;
for (int j=0;j<n;j++)
if (i>>j&1)
f[j+1]=1;
clr(dp);
dfs(1,0);
for (int j=1;j<=n;j++)
ans+=c*dp[1][j];
}
cout<<ans<<endl;
return 0;
}