在Android中使用FlatBuffers(中篇)

本文对比测试了FlatBuffers、Protobuf和JSON在数据编码和解码性能上的表现,揭示了不同数据结构和数量下各格式的优劣。实验结果显示,FlatBuffers在编码效率和解码速度上均有显著优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文来自网易云社区

FlatBuffers、Protobuf及JSON对比测试

 

FlatBuffers相对于Protobuf的表现又如何呢?这里我们用数据说话,对比一下FlatBuffers格式、JSON格式与Protobuf的表现。测试同样用fastjson作为JSON的编码解码工具。

 

测试用的数据结构所有的数据结构,Protobuf相关的测试代码,及JSON的测试代码同在Android中使用Protocol Buffers 一文所述,FlatBuffers的测试代码如上面看到的 AddressBookFlatBuffers

 

通过如下的这段代码来执行测试:

 

    private class ProtoTestTask extends AsyncTask<Void, Void, Void> {
        private static final int BUFFER_LEN = 8192;

        private void compress(InputStream is, OutputStream os)
                throws Exception {

            GZIPOutputStream gos = new GZIPOutputStream(os);

            int count;
            byte data[] = new byte[BUFFER_LEN];
            while ((count = is.read(data, 0, BUFFER_LEN)) != -1) {
                gos.write(data, 0, count);
            }

            gos.finish();
            gos.close();
        }

        private int getCompressedDataLength(byte[] data) {
            ByteArrayInputStream bais =new ByteArrayInputStream(data);
            ByteArrayOutputStream baos = new ByteArrayOutputStream();      try {
                compress(bais, baos);
            } catch (Exception e) {
            }

            return baos.toByteArray().length;
        }

        private void dumpDataLengthInfo(byte[] protobufData, String jsonData, byte[] flatbufData) {
            int compressedProtobufLength = getCompressedDataLength(protobufData);
            int compressedJSONLength = getCompressedDataLength(jsonData.getBytes());
            int compressedFlatbufLength = getCompressedDataLength(flatbufData);
            Log.i(TAG, String.format("%-120s", "Data length"));
            Log.i(TAG, String.format("%-20s%-20s%-20s%-20s%-20s%-20s", "Protobuf", "Protobuf (GZIP)",
                    "JSON", "JSON (GZIP)", "Flatbuf", "Flatbuf (GZIP)"));
            Log.i(TAG, String.format("%-20s%-20s%-20s%-20s%-20s%-20s",
                    String.valueOf(protobufData.length), compressedProtobufLength,
                    String.valueOf(jsonData.getBytes().length), compressedJSONLength,
                    String.valueOf(flatbufData.length), compressedFlatbufLength));
        }

        private void doEncodeTest(String[] names, int times) {
            long startTime = System.nanoTime();
            byte[] protobufData = AddressBookProtobuf.encodeTest(names, times);
            long protobufTime = System.nanoTime();
            protobufTime = protobufTime - startTime;

            startTime = System.nanoTime();
            String jsonData = AddressBookJson.encodeTest(names, times);
            long jsonTime = System.nanoTime();
            jsonTime = jsonTime - startTime;

            startTime = System.nanoTime();
            byte[] flatbufData = AddressBookFlatBuffers.encodeTest(names, times);
            long flatbufTime = System.nanoTime();
            flatbufTime = flatbufTime - startTime;

            dumpDataLengthInfo(protobufData, jsonData, flatbufData);

            Log.i(TAG, String.format("%-20s%-20s%-20s%-20s", "Encode Times", String.valueOf(times),
                    "Names Length", String.valueOf(names.length)));

            Log.i(TAG, String.format("%-20s%-20s%-20s%-20s%-20s%-20s",
                    "ProtobufTime", String.valueOf(protobufTime),
                    "JsonTime", String.valueOf(jsonTime),
                    "FlatbufTime", String.valueOf(flatbufTime)));
        }

        private void doEncodeTest10(int times) {
            doEncodeTest(TestUtils.sTestNames10, times);
        }

        private void doEncodeTest50(int times) {
            doEncodeTest(TestUtils.sTestNames50, times);
        }

        private void doEncodeTest100(int times) {
            doEncodeTest(TestUtils.sTestNames100, times);
        }

        private void doEncodeTest(int times) {
            doEncodeTest10(times);
            doEncodeTest50(times);
            doEncodeTest100(times);
        }

        private void doDecodeTest(String[] names, int times) {
            byte[] protobufBytes = AddressBookProtobuf.encodeTest(names);
            ByteArrayInputStream bais = new ByteArrayInputStream(protobufBytes);
            long startTime = System.nanoTime();
            AddressBookProtobuf.decodeTest(bais, times);
            long protobufTime = System.nanoTime();
            protobufTime = protobufTime - startTime;

            String jsonStr = AddressBookJson.encodeTest(names);
            startTime = System.nanoTime();
            AddressBookJson.decodeTest(jsonStr, times);
            long jsonTime = System.nanoTime();
            jsonTime = jsonTime - startTime;

            byte[] flatbufData = AddressBookFlatBuffers.encodeTest(names);
            startTime = System.nanoTime();
            AddressBookFlatBuffers.decodeTest(flatbufData, times);
            long flatbufTime = System.nanoTime();
            flatbufTime = flatbufTime - startTime;

            Log.i(TAG, String.format("%-20s%-20s%-20s%-20s", "Decode Times", String.valueOf(times),
                    "Names Length", String.valueOf(names.length)));
            Log.i(TAG, String.format("%-20s%-20s%-20s%-20s%-20s%-20s",
                    "ProtobufTime", String.valueOf(protobufTime),
                    "JsonTime", String.valueOf(jsonTime),
                    "FlatbufTime", String.valueOf(flatbufTime)));
        }

        private void doDecodeTest10(int times) {
            doDecodeTest(TestUtils.sTestNames10, times);
        }

        private void doDecodeTest50(int times) {
            doDecodeTest(TestUtils.sTestNames50, times);
        }

        private void doDecodeTest100(int times) {
            doDecodeTest(TestUtils.sTestNames100, times);
        }

        private void doDecodeTest(int times) {
            doDecodeTest10(times);
            doDecodeTest50(times);
            doDecodeTest100(times);
        }

        @Override
        protected Void doInBackground(Void... params) {
            TestUtils.initTest();
            doEncodeTest(5000);

            doDecodeTest(5000);
            return null;
        }

        @Override
        protected void onPostExecute(Void aVoid) {
            super.onPostExecute(aVoid);
        }
    }

这里我们执行3组编码测试及3组解码测试。对于编码测试,第一组的单个数据中包含10个Person,第二组的包含50个,第三组的包含100个,然后对每个数据分别执行5000次的编码操作。

 

对于解码测试,三组中单个数据同样包含10个Person、50个及100个,然后对每个数据分别执行5000次的解码码操作。

 

在Galaxy Nexus的Android 4.4.4 CM平台上执行上述测试,最终得到如下结果:

 

编码后数据长度对比 (Bytes)

 

Person个数ProtobufProtobuf(GZIP)JSONJSON(GZIP)FlatbufFlatbuf(GZIP)
1086028817033431532513
5043009868463104874521814
10086001841169131918148523416

 

相同的数据,经过编码,在压缩前JSON的数据最长,FlatBuffers的数据长度与JSON的短大概10 %,而Protobuf的数据长度则大概只有JSON的一半。而在用GZIP压缩后,Protobuf的数据长度与JSON的接近,FlatBuffers的数据长度则接近两者的两倍。

 

编码性能对比 (S)

 

Person个数ProtobufJSONFlatBuffers
106.0008.95212.464
5026.84745.78256.752
10050.60273.688108.426

 

编码性能Protobuf相对于JSON有较大幅度的提高,而FlatBuffers则有较大幅度的降低。

解码性能对比 (S)

 

Person个数ProtobufJSONFlatBuffers
100.25510.7660.014
500.24551.1340.014
1000.323101.0700.006

 

解码性能方面,Protobuf相对于JSON,有着惊人的提升。Protobuf的解码时间几乎不随着数据长度的增长而有太大的增长,而JSON则随着数据长度的增加,解码所需要的时间也越来越长。而FlatBuffers则由于无需解码,在性能方面相对于前两者更有着非常大的提升。

 

FlatBuffers 编码原理

 

FlatBuffers的Java库只提供了如下的4个类:

 

./com/google/flatbuffers/Constants.java
./com/google/flatbuffers/FlatBufferBuilder.java
./com/google/flatbuffers/Struct.java
./com/google/flatbuffers/Table.java

Constants 类定义FlatBuffers中可用的基本原始数据类型的长度:

 

public class Constants {
    // Java doesn't seem to have these.
    /** The number of bytes in an `byte`. */
    static final int SIZEOF_BYTE = 1;
    /** The number of bytes in a `short`. */
    static final int SIZEOF_SHORT = 2;
    /** The number of bytes in an `int`. */
    static final int SIZEOF_INT = 4;
    /** The number of bytes in an `float`. */
    static final int SIZEOF_FLOAT = 4;
    /** The number of bytes in an `long`. */
    static final int SIZEOF_LONG = 8;
    /** The number of bytes in an `double`. */
    static final int SIZEOF_DOUBLE = 8;
    /** The number of bytes in a file identifier. */
    static final int FILE_IDENTIFIER_LENGTH = 4;
}

FlatBufferBuilder 用于FlatBuffers编码,它会将我们的结构化数据序列化为字节数组。我们借助于 FlatBufferBuilder 在 ByteBuffer 中放置基本数据类型的数据、数组、字符串及对象。ByteBuffer 用于处理字节序,在序列化时,它将数据按适当的字节序进行序列化,在发序列化时,它将多个字节转换为适当的数据类型。在 .fbs 文件中定义的 table 和 struct,为它们生成的Java 类会继承 TableStruct

 

在反序列化时,输入的ByteBuffer数据被当作字节数组,Table提供了针对字节数组的操作,生成的Java类负责对这些数据进行解释。对于FlatBuffers编码的数据,无需进行解码,只需进行解释。在编译 .fbs 文件时,每个字段在这段数据中的位置将被确定。每个字段的类型及长度将被硬编码进生成的Java类。

 

Struct 类的代码也比较简洁:

package com.google.flatbuffers;

import java.nio.ByteBuffer;

/// @cond FLATBUFFERS_INTERNAL

/**
 * All structs in the generated code derive from this class, and add their own accessors.
 */
public class Struct {
  /** Used to hold the position of the `bb` buffer. */
  protected int bb_pos;
  /** The underlying ByteBuffer to hold the data of the Struct. */
  protected ByteBuffer bb;
}

整体的结构如下图:

 

 

 

在序列化结构化数据时,我们首先需要创建一个 FlatBufferBuilder ,在这个对象的创建过程中会分配或从调用者那里获取 ByteBuffer,序列化的数据将保存在这个 ByteBuffer中:

 

   /**
    * Start with a buffer of size `initial_size`, then grow as required.
    *
    * @param initial_size The initial size of the internal buffer to use.
    */
    public FlatBufferBuilder(int initial_size) {
        if (initial_size <= 0) initial_size = 1;
        space = initial_size;
        bb = newByteBuffer(initial_size);
    }

   /**
    * Start with a buffer of 1KiB, then grow as required.
    */
    public FlatBufferBuilder() {
        this(1024);
    }

    /**
     * Alternative constructor allowing reuse of {@link ByteBuffer}s.  The builder
     * can still grow the buffer as necessary.  User classes should make sure
     * to call {@link #dataBuffer()} to obtain the resulting encoded message.
     *
     * @param existing_bb The byte buffer to reuse.
     */
    public FlatBufferBuilder(ByteBuffer existing_bb) {
        init(existing_bb);
    }

    /**
     * Alternative initializer that allows reusing this object on an existing
     * `ByteBuffer`. This method resets the builder's internal state, but keeps
     * objects that have been allocated for temporary storage.
     *
     * @param existing_bb The byte buffer to reuse.
     * @return Returns `this`.
     */
    public FlatBufferBuilder init(ByteBuffer existing_bb){
        bb = existing_bb;
        bb.clear();
        bb.order(ByteOrder.LITTLE_ENDIAN);
        minalign = 1;
        space = bb.capacity();
        vtable_in_use = 0;
        nested = false;
        finished = false;
        object_start = 0;
        num_vtables = 0;
        vector_num_elems = 0;
        return this;
    }

    static ByteBuffer newByteBuffer(int capacity) {
        ByteBuffer newbb = ByteBuffer.allocate(capacity);
        newbb.order(ByteOrder.LITTLE_ENDIAN);
        return newbb;
    }

下面我们更详细地分析基本数据类型数据、数组及对象的序列化过程。ByteBuffer 为小尾端的。

FlatBuffers编码基本数据类型

 

FlatBuffer 的基本数据类型主要包括如下这些:

 

Boolean
Byte
Short
Int
Long
Float
Double

FlatBufferBuilder 提供了三组方法用于操作这些数据:

 

    public void putBoolean(boolean x);
    public void putByte   (byte    x);
    public void putShort  (short   x);
    public void putInt    (int     x);
    public void putLong   (long    x);
    public void putFloat  (float   x);
    public void putDouble (double  x);

    public void addBoolean(boolean x);
    public void addByte   (byte    x);
    public void addShort  (short   x);
    public void addInt    (int     x);
    public void addLong   (long    x);
    public void addFloat  (float   x);
    public void addDouble (double  x);

    public void addBoolean(int o, boolean x, boolean d);
    public void addByte(int o, byte x, int d);
    public void addShort(int o, short x, int d);
    public void addInt    (int o, int     x, int     d);
    public void addLong   (int o, long    x, long    d);
    public void addFloat  (int o, float   x, double  d);
    public void addDouble (int o, double  x, double  d);

putXXX 那一组,直接地将一个数据放入 ByteBuffer 中,它们的实现基本如下面这样:

    public void putBoolean(boolean x) {
        bb.put(space -= Constants.SIZEOF_BYTE, (byte) (x ? 1 : 0));
    }

    public void putByte(byte x) {
        bb.put(space -= Constants.SIZEOF_BYTE, x);
    }

    public void putShort(short x) {
        bb.putShort(space -= Constants.SIZEOF_SHORT, x);
    }

Boolean值会被先转为byte类型再放入 ByteBuffer。另外一点值得注意的是,数据是从 ByteBuffer 的结尾处开始放置的,space用于记录最近放入的数据的位置及剩余的空间。

 

addXXX(XXX x) 那一组在放入数据之前会先做对齐处理,并在需要时扩展 ByteBuffer 的容量:

 

    static ByteBuffer growByteBuffer(ByteBuffer bb) {
        int old_buf_size = bb.capacity();
        if ((old_buf_size & 0xC0000000) != 0)  // Ensure we don't grow beyond what fits in an int.
            throw new AssertionError("FlatBuffers: cannot grow buffer beyond 2 gigabytes.");
        int new_buf_size = old_buf_size << 1;
        bb.position(0);
        ByteBuffer nbb = newByteBuffer(new_buf_size);
        nbb.position(new_buf_size - old_buf_size);
        nbb.put(bb);
        return nbb;
    }

   public void pad(int byte_size) {
       for (int i = 0; i < byte_size; i++) bb.put(--space, (byte) 0);
   }

    public void prep(int size, int additional_bytes) {
        // Track the biggest thing we've ever aligned to.
        if (size > minalign) minalign = size;
        // Find the amount of alignment needed such that `size` is properly
        // aligned after `additional_bytes`
        int align_size = ((~(bb.capacity() - space + additional_bytes)) + 1) & (size - 1);
        // Reallocate the buffer if needed.
        while (space < align_size + size + additional_bytes) {
            int old_buf_size = bb.capacity();
            bb = growByteBuffer(bb);
            space += bb.capacity() - old_buf_size;
        }
        pad(align_size);
    }

    public void addBoolean(boolean x) {
        prep(Constants.SIZEOF_BYTE, 0);
        putBoolean(x);
    }

    public void addInt(int x) {
        prep(Constants.SIZEOF_INT, 0);
        putInt(x);
    }

对齐是数据存放的起始位置相对于ByteBuffer的结束位置的对齐,additional bytes被认为是不需要对齐的,且在必要的时候会在ByteBuffer可用空间的结尾处填充值为0的字节。在扩展 ByteBuffer 的空间时,老的ByteBuffer被放在新ByteBuffer的结尾处。

 

addXXX(int o, XXX x, YYY y) 这一组方法在放入数据之后,会将 vtable 中对应位置的值更新为最近放入的数据的offset。

 

    public void addShort(int o, short x, int d) {
        if (force_defaults || x != d) {
            addShort(x);
            slot(o);
        }
    }

    public void slot(int voffset) {
        vtable[voffset] = offset();
    }

后面我们在分析编码对象时再来详细地了解vtable。

基本上,在我们的应用程序代码中不要直接调用这些方法,它们主要在构造对象时用于存储对象的基本数据类型字段。

 

 

相关阅读:

在Android中使用FlatBuffers(上篇)

在Android中使用FlatBuffers(中篇)

在Android中使用FlatBuffers(下篇)

网易云新用户大礼包:https://www.163yun.com/gift

本文来自网易云社区,经作者韩鹏飞授权发布。

 

转载于:https://www.cnblogs.com/163yun/p/9487320.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值