Given an array of n integers where n > 1, nums
, return an array output
such that output[i]
is equal to the product of all the elements of nums
except nums[i]
.
Solve it without division and in O(n).
For example, given [1,2,3,4]
, return [24,12,8,6]
.
Follow up:
Could you solve it with constant space complexity? (Note: The output array does not count as extra space for the purpose of space complexity analysis.)
题意:
给定一个数组,对于数组中每一个元素i,求ret[i] = nums[0]*nums[1]...*nums[i-1]*nums[i+1]*...*nums[len-1]。不能用除法,要求时间复杂度O(n).
思路:
先由左到右的顺序求每个元素左边乘积(ret[i] = nums[0]*nums[1]...*nums[i-1]),在其结果上由右到左求每个元素右边乘积(ret[i] = ret[i]*nums[i+1]*...*nums[len-1])即可,其中nums[0]*nums[1]...*nums[i-1]以及nums[i+1]*...*nums[len-1]都可由常量连乘得到。
C++:
1 class Solution { 2 public: 3 vector<int> productExceptSelf(vector<int>& nums) { 4 5 int len = nums.size(), temp; 6 vector<int> ret(len, 1); 7 8 temp = 1; 9 for(int i = 1; i < len; i++) 10 { 11 temp *= nums[i - 1]; 12 ret[i] *= temp; 13 } 14 15 temp = 1; 16 for(int i = len - 2; i >= 0; i--) 17 { 18 temp *= nums[i + 1]; 19 ret[i] *= temp; 20 } 21 22 return ret; 23 } 24 };