模糊PID控温算法的具体实现(一):参数自整定模糊PID算法概念

本文介绍了模糊PID控温算法的实现,包括预处理、模糊化、规则设计、推理机、精确化和后处理等步骤。模糊控制通过模糊推理和参数自整定,适用于数学模型不确定的系统,但易产生静差。通过结合PID,形成参数自整定模糊PID算法,动态调整Kp, Ki, Kd参数,提高控制效果。" 115193839,9053557,Fluka安装与配置全攻略:Flair、GeoViewer与pydicom,"['软件安装', '系统配置', '科学计算', '数据处理', 'Linux']

  上个学期已经基本上实现了PID的温控算法,为了撰写小论文,这个学期最先要做的事情就是实现模糊PID的温控算法。

  模糊控制系统的构成与与常规的反馈控制系统的主要区别在于控制器主要是由模糊化,模糊推理机和精确化三个功能模块和知识库(包括数据库和规则库)构成的。具体实现过程如下所示:

(1)预处理:

  输入数据往往是通过测量设备测量得到的一个具体数据,预处理就是在它们进入控制器前对这些数据进行分类,或性质程度的定义。预处理过程也是量化过程,它是在离散空间中把输入数据划分为若干个数字级别。例如,假设一个反馈误差为 4.5,误差空间是(-5,-4…4,5),量化器会使它靠近离它最近的级别,四舍五入到 5。称量化器量化的比例为量化因子。量化过程是个削减数据量的方法,但是如果量化过于粗糙,控制器会振荡甚至失去平衡。

(2)模糊化

  在进行模糊化时,需要确定模糊集论域中语言变量各值所对应的模糊子集的隶属度函数。隶属度函数一般是根据操作者的经验初步确定,在调试开发甚至控制器运行中需不断修正和优化,以满足控制的要求。隶属度函数的形状很多,但是影响模糊控制器性能的关键因素是各模糊集覆盖论域的情况,而隶属函数的形状在达到控制要求方面并无大的差别,为使数学表达和运算简单,一般选用三角形、梯形隶属函数。但隶属函数的幅宽大小对性能影响较大,隶属函数形状较陡时,引起的输出变化较剧烈,控制的灵敏度高;隶属函数形状平缓时,引起的输出变化较缓慢,对系统的稳定性好。因此,在选择隶属函数时,一般在偏差较小或接近于零附近时,采用形状较陡的隶属函数;而在偏差较大的区域采用形状平缓的隶属函数,以使系统具有良好的鲁棒性。而且在实际工作中,不应出现三个隶属函数相交的状态。一般,任何两个模糊子集的交集的最大隶属度中的最大值取为 0.4~0.8 之间。另外,隶属函数的位置分布对控制性能也有一定的影响,当函数在整个论域平均分布时,控制效果并不好,因此,一般将零固定,其它模糊子集向零集靠拢,以达到较好的控制效果。

(3)设计控制规则表   

  规则的条件和结论中要用到一

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值