HDOJ 1397 Goldbach's Conjecture(快速筛选素数法)

本文介绍了如何通过快速筛选素数并利用打表技术解决哥德巴赫猜想的问题,即对于任何大于等于4的偶数n,至少存在一对素数p1和p2使得n = p1 + p2。通过输入一系列偶数作为参数,程序输出满足条件的素数对数量,同时强调输出的是不同素数对的数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description
Goldbach’s Conjecture: For any even number n greater than or equal to 4, there exists at least one pair of prime numbers p1 and p2 such that n = p1 + p2.
This conjecture has not been proved nor refused yet. No one is sure whether this conjecture actually holds. However, one can find such a pair of prime numbers, if any, for a given even number. The problem here is to write a program that reports the number of all the pairs of prime numbers satisfying the condition in the conjecture for a given even number.

A sequence of even numbers is given as input. Corresponding to each number, the program should output the number of pairs mentioned above. Notice that we are interested in the number of essentially different pairs and therefore you should not count (p1, p2) and (p2, p1) separately as two different pairs.

Input
An integer is given in each input line. You may assume that each integer is even, and is greater than or equal to 4 and less than 2^15. The end of the input is indicated by a number 0.

Output
Each output line should contain an integer number. No other characters should appear in the output.

Sample Input
6
10
12
0

Sample Output
1
2
1

题意:
哥德巴赫猜想:任何偶数n大于或等于4,至少存在一对素数P1和P2,n=p1+p2。p1+p2和p2+p1是一样的。
本题是统计有多少对不同的素数和等于n.

注意用到素数筛选,然后打表就可以得出答案了。

import java.util.Scanner;

public class Main{
    static int[] db = new int[65536];
    public static void main(String[] args) {
        dabiao();
        //System.out.println(Math.pow(2, 15));-32768
        Scanner sc = new Scanner(System.in);
        while(sc.hasNext()){
            int n = sc.nextInt();
            if(n==0){
                return ;
            }
            int tp = 0;
            for(int i=1;i<=n/2;i++){

                if(db[i]==1&&db[n-i]==1){
                    tp++;
                }
            }
            System.out.println(tp);

        }

    }

    //快速筛选素数
    private static void dabiao() {
        for(int i=0;i<db.length;i++){
            db[i]=1;
        }
        db[0]=0;
        db[1]=0;
        for(int i=2;i<=Math.sqrt(db.length);i++){
            for(int j=i+i;j<db.length;j=j+i){
                if(db[i]==1){
                    db[j]=0;
                }
            }
        }

//      for(int i=0;i<1000;i++){
//          if(db[i]==1){
//              System.out.println(i);
//          }
//      }
    }

}

转载于:https://www.cnblogs.com/webmen/p/5739302.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值