spoj Distinct Substrings 后缀数组

子串计数算法

给定一个字符串,求不相同的子串的个数。

假如给字符串“ABA";排列的子串可能:

A       B      A

AB       BA

ABA  

共3*(3+1)/2=6种;

后缀数组表示时:

A

ABA

BA

对于A和AB height[i]=1;

表明一个长度公共,所以ABA中多出现了A这个子串,所以6-1=5;

对于ABA BA height[i]=0,所以不需要减去。

最后答案为5;

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<string>
#include<map>
#define LL long long
using namespace std;
#define maxn 1100
int wa[maxn],wb[maxn],wv[maxn],WS[maxn];
int cmp(int *r,int a,int b,int l)
{return r[a]==r[b]&&r[a+l]==r[b+l];}
void da(int *r,int *sa,int n,int m)
{
    int i,j,p,*x=wa,*y=wb,*t;
    for(i=0;i<m;i++) WS[i]=0;
    for(i=0;i<n;i++) WS[x[i]=r[i]]++;
    for(i=1;i<m;i++) WS[i]+=WS[i-1];
    for(i=n-1;i>=0;i--) sa[--WS[x[i]]]=i;
    for(j=1,p=1;p<n;j*=2,m=p)
    {
        for(p=0,i=n-j;i<n;i++) y[p++]=i;
        for(i=0;i<n;i++) if(sa[i]>=j) y[p++]=sa[i]-j;
        for(i=0;i<n;i++) wv[i]=x[y[i]];
        for(i=0;i<m;i++) WS[i]=0;
        for(i=0;i<n;i++) WS[wv[i]]++;
        for(i=1;i<m;i++) WS[i]+=WS[i-1];
        for(i=n-1;i>=0;i--) sa[--WS[wv[i]]]=y[i];
        for(t=x,x=y,y=t,p=1,x[sa[0]]=0,i=1;i<n;i++)
            x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?p-1:p++;
    }
    return;
}
int Rank[maxn],height[maxn];
void calheight(int *r,int *sa,int n)
{
    int i,j,k=0;
    for(i=1;i<=n;i++) Rank[sa[i]]=i;
    for(i=0;i<n;height[Rank[i++]]=k)
        for(k?k--:0,j=sa[Rank[i]-1];r[i+k]==r[j+k];k++);
    return;
}
int r[maxn],sa[maxn];
char s[maxn];
void slove(int len)
{
    int i,j,ans;
    ans=(len+1)*len/2;//总共排列的个数
    for(i=1;i<=len;i++)
    {
        ans-=height[i];//相同的部分长度表示这段重复出现了。并且出现了height[i]个组合。
    }
    cout<<ans<<endl;
}
int main()
{
    int t;
    cin>>t;
    while(t--)
    {
        cin>>s;
        int len=strlen(s);
        for(int i=0;i<len;i++)
            r[i]=s[i];
        r[len]=0;
        da(r,sa,len+1,125);
        calheight(r,sa,len);
        slove(len);
    }
}

 

转载于:https://www.cnblogs.com/sweat123/p/4802926.html

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值