主方法

递归式与分治方法是紧密相关的,因为使用递归式可以清晰的刻画分治算法的运行时间。
主方法如下:
T(n) = aT(n/b) + f(n)
a>=1 b>1 f(n) 是给定的函数。这种形式的递归式很常见。刻画了一个分治算法。生成a个子问题。每个子问题是原来的1/b。分解和合并步骤共消耗f(n)
主方法是计算时间复杂度的时候用的。


利用上面的这个定理就可以计算递归式的时间复杂度了,这里面的1)与3)换句话说就是1)f(n)<nlogb^a 3)意味着f(n)>nlogb^a

T(n) = 9T(n/3) + n 那么计算其渐进界就是nlog3^9=n^2

转载于:https://www.cnblogs.com/diegodu/p/4500565.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值