codeforces 352 div 2 C.Recycling Bottles 贪心

本文介绍了一个关于垃圾回收的问题,目标是最小化两人将所有瓶子送入回收箱的总行走距离。通过计算每个瓶子到回收箱的距离及个人贡献,确定了最小化总距离的有效策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

C. Recycling Bottles
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

It was recycling day in Kekoland. To celebrate it Adil and Bera went to Central Perk where they can take bottles from the ground and put them into a recycling bin.

We can think Central Perk as coordinate plane. There are n bottles on the ground, the i-th bottle is located at position (xi, yi). Both Adil and Bera can carry only one bottle at once each.

For both Adil and Bera the process looks as follows:

  1. Choose to stop or to continue to collect bottles.
  2. If the choice was to continue then choose some bottle and walk towards it.
  3. Pick this bottle and walk to the recycling bin.
  4. Go to step 1.

Adil and Bera may move independently. They are allowed to pick bottles simultaneously, all bottles may be picked by any of the two, it's allowed that one of them stays still while the other one continues to pick bottles.

They want to organize the process such that the total distance they walk (the sum of distance walked by Adil and distance walked by Bera) is minimum possible. Of course, at the end all bottles should lie in the recycling bin.

Input

First line of the input contains six integers axaybxbytx and ty (0 ≤ ax, ay, bx, by, tx, ty ≤ 109) — initial positions of Adil, Bera and recycling bin respectively.

The second line contains a single integer n (1 ≤ n ≤ 100 000) — the number of bottles on the ground.

Then follow n lines, each of them contains two integers xi and yi (0 ≤ xi, yi ≤ 109) — position of the i-th bottle.

It's guaranteed that positions of Adil, Bera, recycling bin and all bottles are distinct.

Output

Print one real number — the minimum possible total distance Adil and Bera need to walk in order to put all bottles into recycling bin. Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.

Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct if .

Examples
input
3 1 1 2 0 0
3
1 1
2 1
2 3
output
11.084259940083
input
5 0 4 2 2 0
5
5 2
3 0
5 5
3 5
3 3
output
33.121375178000
Note

Consider the first sample.

Adil will use the following path: .

Bera will use the following path: .

Adil's path will be  units long, while Bera's path will be  units long.

题意:给你两个人,一个垃圾桶;利用人把垃圾全部进桶,使得距离最短;

思路:显然答案是sigma一个垃圾到垃圾桶距离的两倍;

    求出一个人动和两个人动的差值最大的距离;

    比较减去最大值;

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define mod 1000000007
#define inf 999999999
#define esp 0.00000000001
//#pragma comment(linker, "/STACK:102400000,102400000")
int scan()
{
    int res = 0 , ch ;
    while( !( ( ch = getchar() ) >= '0' && ch <= '9' ) )
    {
        if( ch == EOF ) return 1 << 30 ;
    }
    res = ch - '0' ;
    while( ( ch = getchar() ) >= '0' && ch <= '9' )
        res = res * 10 + ( ch - '0' ) ;
    return res ;
}
long double dis(long double a,long double b,long double c,long double d)
{
    return sqrt((d-b)*(d-b)+(c-a)*(c-a));
}
struct is
{
    long double cha;
    int pos;
}a1[100010],b1[100010];
int flag[100010];
bool cmp(is x,is y)
{
    return x.cha>y.cha;
}
int main()
{
    long double a,b,c,d,e,f;
    cin>>a>>b>>c>>d>>e>>f;
    long double sum=0;
    int x;
    scanf("%d",&x);
    for(int i=0;i<x;i++)
    {
        long double u,v;
        cin>>u>>v;
        sum+=dis(e,f,u,v)*2.0;
        a1[i].cha=dis(e,f,u,v)-dis(u,v,a,b);
        b1[i].cha=dis(e,f,u,v)-dis(u,v,c,d);
        a1[i].pos=i;
        b1[i].pos=i;
    }
    if(x==1)
    {
        //printf("%f\n",sum-max(a1[0].cha,b1[0].cha));
        cout << setprecision(6) << setiosflags(ios::scientific)<<sum-max(a1[0].cha,b1[0].cha)<<endl;
        return 0;
    }
    sort(a1,a1+x,cmp);
    sort(b1,b1+x,cmp);
    double aa,bb;
    if(a1[0].cha<0&&b1[0].cha<0)
    {
        cout << setprecision(6) << setiosflags(ios::scientific)<<sum-max(a1[0].cha,b1[0].cha)<<endl;
        return 0;
    }
    long double ans1;
    long double ans2;
    long double ans3;
    if(a1[0].pos!=b1[0].pos)
    ans3=a1[0].cha+b1[0].cha;
    else
    {
        if(a1[0].cha+b1[1].cha<a1[1].cha+b1[0].cha)
        ans3=a1[1].cha+b1[0].cha;
        else
        ans3=a1[0].cha+b1[1].cha;
    }
    ans2=a1[0].cha;
    ans1=b1[0].cha;
    cout << setprecision(6) << setiosflags(ios::scientific)<<sum-max(ans1,max(ans2,ans3))<<endl;
    return 0;
}

 

转载于:https://www.cnblogs.com/jhz033/p/5493266.html

1. 用户与身体信息管理模块 用户信息管理: 注册登录:支持手机号 / 邮箱注册,密码加密存储,提供第三方快捷登录(模拟) 个人资料:记录基本信息(姓名、年龄、性别、身高、体重、职业) 健康目标:用户设置目标(如 “减重 5kg”“增肌”“维持健康”)及期望周期 身体状态跟踪: 体重记录:定期录入体重数据,生成体重变化曲线(折线图) 身体指标:记录 BMI(自动计算)、体脂率(可选)、基础代谢率(根据身高体重估算) 健康状况:用户可填写特殊情况(如糖尿病、过敏食物、素食偏好),系统据此调整推荐 2. 膳食记录与食物数据库模块 食物数据库: 基础信息:包含常见食物(如饭、鸡蛋、牛肉)的名称、类别(主食 / 肉类 / 蔬菜等)、每份重量 营养成分:记录每 100g 食物的热量(kcal)、蛋白质、脂肪、碳水化合物、维生素、矿物质含量 数据库维护:管理员可添加新食物、更新营养数据,支持按名称 / 类别检索 膳食记录功能: 快速记录:用户选择食物、输入食用量(克 / 份),系统自动计算摄入的营养成分 餐次分类:按早餐 / 午餐 / 晚餐 / 加餐分类记录,支持上传餐食照片(可选) 批量操作:提供常见套餐模板(如 “三明治 + 牛奶”),键添加到记录 历史记录:按日期查看过往膳食记录,支持编辑 / 删除错误记录 3. 营养分析模块 每日营养摄入分析: 核心指标计算:统计当日摄入的总热量、蛋白质 / 脂肪 / 碳水化合物占比(按每日推荐量对比) 微量营养素分析:检查维生素(如维生素 C、钙、铁)的摄入是否达标 平衡评估:生成 “营养平衡度” 评分(0-100 分),指出摄入过剩或不足的营养素 趋势分析: 周 / 月营养趋势:用折线图展示近 7 天 / 30 天的热量、三大营养素摄入变化 对比分析:将实际摄入与推荐量对比(如 “蛋白质摄入仅达到推荐量的 70%”) 目标达成率:针对健
### 关于Codeforces Round 704 Div. 2 的信息 对于Codeforces Round 704 Div. 2的比赛,虽然未直接提及具体题目解析或参赛体验的内容,但是可以根据平台的贯风格推测该轮比赛同样包含了多种算法挑战。通常这类赛事会涉及数据结构、动态规划、图论等方面的知识。 考虑到提供的参考资料并未覆盖到此特定编号的比赛详情[^1],建议访问Codeforces官方网站查询官方题解或是浏览社区论坛获取其他选手分享的经验总结。般而言,在赛后不久就会有详细的解答发布出来供学习交流之用。 为了帮助理解同类型的竞赛内容,这里提供了个基于过往相似赛事的例子——如何通过居中子数组特性来解决问题的方法: ```cpp // 假设有个函数用于处理给定条件下的数组恢复问题 vector<int> restoreArray(vector<vector<int>>& adjacentPairs) { unordered_map<int, vector<int>> adj; for (auto& p : adjacentPairs){ adj[p[0]].push_back(p[1]); adj[p[1]].push_back(p[0]); } int start = 0; for(auto& [num, neighbors] : adj){ if(neighbors.size() == 1){ start = num; break; } } vector<int> res(adjacentPairs.size() + 1); unordered_set<int> seen; function<void(int,int)> dfs = [&](int node, int idx){ seen.insert(node); res[idx] = node; for(auto next : adj[node]){ if(!seen.count(next)){ dfs(next, idx + 1); } } }; dfs(start, 0); return res; } ``` 上述代码展示了利用深度优先搜索(DFS)重建原始序列的种方式,这与某些情况下解决Codeforces比赛中遇到的问题思路相吻合[^4]。 #### 注意事项 由于缺乏针对Codeforces Round 704 Div. 2的具体材料支持,以上解释更多依赖于对同类活动的理解以及编程技巧的应用实例来进行说明。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值