mxnet导入图像数据

图像数据集标注与处理
本文介绍了从JSON文件中读取图像标签,并根据标签类型筛选并整理数据集的过程。通过Python代码实现对图像数据集的预处理,包括数据集划分、图像读取及标签编码,为后续模型训练做好准备。

图像的标签在一个json文件中。

%matplotlib inline
import json
import gluonbook as gb
import mxnet as mx
from mxnet import autograd, gluon, image, init, nd
from mxnet.gluon import data as gdata, loss as gloss, utils as gutils
import sys
from time import time

train_Pedestrian_url = []
train_Cyclist_url = []
train_Others_url = []

with open('instances.json',encoding='utf-8') as f:
    for _ in range(100000):
        if len(train_Pedestrian_url) + len(train_Cyclist_url) + len(train_Others_url) >= 300:
            break
        line = f.readline()
        js = json.loads(line)
        if js['attrs']['ignore']=='yes' or js['attrs']['occlusion']=='heavily_occluded' or js['attrs']['occlusion']=='invisible':
            continue
        if js['attrs']['type'] == 'Pedestrian':
            if len(train_Pedestrian_url) >=100:
                continue
            train_Pedestrian_url.append(js['thumbnail_path'])
        elif js['attrs']['type'] == 'Cyclist':
            if len(train_Cyclist_url) >=100:
                continue
            train_Cyclist_url.append(js['thumbnail_path'])
        elif js['attrs']['type'] == 'Others':
            if len(train_Others_url) >=100:
                continue
            train_Others_url.append(js['thumbnail_path'])
        # img = image.imread(url)

    f.close()

print(train_Cyclist_url)
print(len(train_Pedestrian_url),len(train_Cyclist_url),len(train_Others_url))

img = image.imread('/mnt/hdfs-data-4/data/'+train_Cyclist_url[0])
img.astype('float32')

labels = nd.zeros(shape=(30000,))
labels[10000:20000] = 1
labels[20000:] = 2

数据整理就差不多了,然后就是建网络,跑模型了。

转载于:https://www.cnblogs.com/TreeDream/p/10059551.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值