Palindrome subsequence

本文探讨如何计算给定字符串中不同的回文子序列数量,通过动态规划方法解决此问题,并提供具体实现代码。

                Palindrome subsequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65535 K (Java/Others)
Total Submission(s): 2232    Accepted Submission(s): 889


Problem Description
In mathematics, a subsequence is a sequence that can be derived from another sequence by deleting some elements without changing the order of the remaining elements. For example, the sequence <A, B, D> is a subsequence of <A, B, C, D, E, F>.
(http://en.wikipedia.org/wiki/Subsequence)

Given a string S, your task is to find out how many different subsequence of S is palindrome. Note that for any two subsequence X = <Sx1, Sx2, ..., Sxk> and Y = <Sy1, Sy2, ..., Syk> , if there exist an integer i (1<=i<=k) such that xi != yi, the subsequence X and Y should be consider different even if Sxi = Syi. Also two subsequences with different length should be considered different.
 

 

Input
The first line contains only one integer T (T<=50), which is the number of test cases. Each test case contains a string S, the length of S is not greater than 1000 and only contains lowercase letters.
 

 

Output
For each test case, output the case number first, then output the number of different subsequence of the given string, the answer should be module 10007.
 

 

Sample Input
4
a
aaaaa
goodafternooneveryone
welcometoooxxourproblems
 
Sample Output
Case 1: 1
Case 2: 31
Case 3: 421
Case 4: 960
 
状态方程dp[i][j] = dp[i+1][j]+dp[i][j-1] - dp[i+1][j-1]; 如果s[i] ==s[j] , dp[i][j]还要加上dp[i+1][j-1]+1; 
这道题WA了很惨,自己做题太少,对于有 -号再求余的一定要考虑是否有可能得出负数,加上mod之后可以保证是正数 dp[i][j] = (dp[i+1][j]+dp[i][j-1] - dp[i+1][j-1] +mod)%mod;
 
 1 #include <iostream>
 2 #include <algorithm>
 3 #include <cstring>
 4 #include <cstdio>
 5 using namespace std;
 6 const int N = 1005;
 7 const int mod = 10007;
 8 int _, n, dp[N][N], cas=1;
 9 char s[N];
10 
11 void solve()
12 {
13     scanf("%s", s+1);
14     n = strlen(s+1);
15     memset(dp, 0, sizeof(dp));
16     for(int k=0; k<n; k++)
17     {
18         for(int i=1; i+k<=n; i++)
19         {
20             int t = i+k;
21             dp[i][t] = (dp[i+1][t] + dp[i][t-1] - dp[i+1][t-1] + mod) % mod;/////////注意
22             if(s[i]==s[t]) dp[i][t] += dp[i+1][t-1] + 1;
23             dp[i][t] %= mod;
24         }
25     }
26     printf("Case %d: %d\n", cas++, dp[1][n]);
27 }
28 
29 int main()
30 {
31     scanf("%d", &_);
32     while(_--) solve();
33     return 0;
34 }
View Code

 

 

转载于:https://www.cnblogs.com/zyx1314/p/3843323.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值