HDU 1693 Eat the Trees(插头DP,入门题)

本文探讨了DotA游戏中一个有趣的数学问题——如何利用回路覆盖矩阵上的树木。通过插头动态规划的方法解决了该问题,并提供了两种实现方案,一种是普通推法,另一种则采用了哈希表优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description
Most of us know that in the game called DotA(Defense of the Ancient), Pudge is a strong hero in the first period of the game. When the game goes to end however, Pudge is not a strong hero any more.
So Pudge’s teammates give him a new assignment—Eat the Trees!

The trees are in a rectangle N * M cells in size and each of the cells either has exactly one tree or has nothing at all. And what Pudge needs to do is to eat all trees that are in the cells.
There are several rules Pudge must follow:
I. Pudge must eat the trees by choosing a circuit and he then will eat all trees that are in the chosen circuit.
II. The cell that does not contain a tree is unreachable, e.g. each of the cells that is through the circuit which Pudge chooses must contain a tree and when the circuit is chosen, the trees which are in the cells on the circuit will disappear.
III. Pudge may choose one or more circuits to eat the trees.

Now Pudge has a question, how many ways are there to eat the trees?
At the picture below three samples are given for N = 6 and M = 3(gray square means no trees in the cell, and the bold black line means the chosen circuit(s))

 

 

Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 10 cases.
For each case, the first line contains the integer numbers N and M, 1<=N, M<=11. Each of the next N lines contains M numbers (either 0 or 1) separated by a space. Number 0 means a cell which has no trees and number 1 means a cell that has exactly one tree.
 
Output
For each case, you should print the desired number of ways in one line. It is guaranteed, that it does not exceed 263 – 1. Use the format in the sample.
 
题目大意:用任意多个回路覆盖矩阵上的1.
思路:插头DP,参考IOI国家集训队论文,陈丹琦的《基于连通性状态压缩的动态规划问题
 
代码(62MS)(普通推,一大堆无用状态):
 1 #include <cstdio>
 2 #include <algorithm>
 3 #include <cstring>
 4 #include <iostream>
 5 using namespace std;
 6 typedef long long LL;
 7 
 8 const int MAXN = 13;
 9 
10 int mat[MAXN][MAXN];
11 LL dp[MAXN][MAXN][1 << MAXN];
12 int n, m, T;
13 
14 LL solve() {
15     memset(dp, 0, sizeof(dp));
16     dp[0][m][0] = 1;
17     for(int i = 1; i <= n; ++i) {
18         for(int j = 0; j < (1 << m); ++j) dp[i][0][j << 1] = dp[i - 1][m][j];
19         for(int k = 1; k <= m; ++k) {
20             for(int state = 0; state < (1 << (m + 1)); ++state) {
21                 int y = 1 << k, x = y >> 1;
22                 if(mat[i][k]) {
23                     if((state & x) && (state & y)) {
24                         dp[i][k][state] = dp[i][k - 1][state - x - y];
25                     } else if((state & x) == 0 && (state & y) == 0) {
26                         dp[i][k][state] = dp[i][k - 1][state + x + y];
27                     } else dp[i][k][state] = dp[i][k - 1][state ^ x ^ y] + dp[i][k - 1][state];
28                 } else {
29                     if((state & x) == 0 && (state & y) == 0) {
30                         dp[i][k][state] = dp[i][k - 1][state];
31                     } else dp[i][k][state] = 0;
32                 }
33             }
34         }
35     }
36     return dp[n][m][0];
37 }
38 
39 int main() {
40     scanf("%d", &T);
41     for(int t = 1; t <= T; ++t) {
42         scanf("%d%d", &n, &m);
43         for(int i = 1; i <= n; ++i)
44             for(int j = 1; j <= m; ++j) scanf("%d", &mat[i][j]);
45         printf("Case %d: There are %I64d ways to eat the trees.\n", t, solve());
46     }
47 }
View Code

 代码(0MS)(hash)(下面代码是lld的……):

  1 #include <iostream>
  2 #include <algorithm>
  3 #include <cstring>
  4 #include <cstdio>
  5 using namespace std;
  6 typedef long long LL;
  7 
  8 const int MAXH = 20010;
  9 const int SIZEH = 13131;
 10 
 11 struct hash_map {
 12     int head[SIZEH];
 13     int next[MAXH], state[MAXH];
 14     LL val[MAXH];
 15     int size;
 16 
 17     void init() {
 18         memset(head, -1, sizeof(head));
 19         size = 0;
 20     }
 21 
 22     void insert(int st, LL sv) {
 23         int h = st % SIZEH;
 24         for(int p = head[h]; ~p; p = next[p]) {
 25             if(state[p] == st) {
 26                 val[p] += sv;
 27                 return ;
 28             }
 29         }
 30         state[size] = st; val[size] = sv; next[size] = head[h]; head[h] = size++;
 31     }
 32 } hashmap[2];
 33 
 34 int getB(int state, int i) {
 35     return (state >> i) & 1;
 36 }
 37 
 38 void setB(int &state, int i, int val) {
 39     state = (state & ~(1 << i)) | (val << i);
 40 }
 41 
 42 int mat[14][14];
 43 int n, m, T;
 44 hash_map *cur, *last;
 45 
 46 void update(int state, LL val, int x, int y) {
 47     int left = getB(state, y);
 48     int up = getB(state, y + 1);
 49     if(mat[x][y] == 0) {
 50         if(left == 0 && up == 0) cur->insert(state, val);
 51         return ;
 52     }
 53     if(left == 0 && up == 0) {
 54         if(x < n - 1 && y < m - 1) {
 55             int newState = state;
 56             setB(newState, y, 1);
 57             setB(newState, y + 1, 1);
 58             cur->insert(newState, val);
 59         }
 60     } else if(left == 0 || up == 0) {
 61         if(x < n - 1) {
 62             int newState = state;
 63             setB(newState, y, 1);
 64             setB(newState, y + 1, 0);
 65             cur->insert(newState, val);
 66         }
 67         if(y < m - 1) {
 68             int newState = state;
 69             setB(newState, y, 0);
 70             setB(newState, y + 1, 1);
 71             cur->insert(newState, val);
 72         }
 73     } else {
 74         int newState = state;
 75         setB(newState, y, 0);
 76         setB(newState, y + 1, 0);
 77         cur->insert(newState, val);
 78     }
 79 }
 80 
 81 LL solve() {
 82     cur = hashmap, last = hashmap + 1;
 83     last->init();
 84     last->insert(0, 1);
 85     for(int i = 0; i < n; ++i) {
 86         int sz = last->size;
 87         for(int k = 0; k < sz; ++k) last->state[k] <<= 1;
 88         for(int j = 0; j < m; ++j) {
 89             cur->init();
 90             sz = last->size;
 91             for(int k = 0; k < sz; ++k)
 92                 update(last->state[k], last->val[k], i, j);
 93             swap(cur, last);
 94         }
 95     }
 96     for(int k = 0; k < last->size; ++k)
 97         if(last->state[k] == 0) return last->val[k];
 98     return 0;
 99 }
100 
101 int main() {
102     scanf("%d", &T);
103     for(int t = 1; t <= T; ++t) {
104         scanf("%d%d", &n, &m);
105         for(int i = 0; i < n; ++i)
106             for(int j = 0; j < m; ++j) scanf("%d", &mat[i][j]);
107         printf("Case %d: There are %lld ways to eat the trees.\n", t, solve());
108     }
109 }
View Code

 

转载于:https://www.cnblogs.com/oyking/p/3391100.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值