【图论补完计划】poj 3013 (dijkstra)

本文介绍了一种解决特定图论问题的算法——如何构造一棵包含所有节点的圣诞树形结构,使得总成本最小。该问题通过Dijkstra算法求解,并考虑了节点权重和边的单位价格对成本的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Big Christmas Tree
Time Limit: 3000MS Memory Limit: 131072K
Total Submissions: 23954 Accepted: 5201

Description

Christmas is coming to KCM city. Suby the loyal civilian in KCM city is preparing a big neat Christmas tree. The simple structure of the tree is shown in right picture.

The tree can be represented as a collection of numbered nodes and some edges. The nodes are numbered 1 through n. The root is always numbered 1. Every node in the tree has its weight. The weights can be different from each other. Also the shape of every available edge between two nodes is different, so the unit price of each edge is different. Because of a technical difficulty, price of an edge will be (sum of weights of all descendant nodes) × (unit price of the edge).

Suby wants to minimize the cost of whole tree among all possible choices. Also he wants to use all nodes because he wants a large tree. So he decided to ask you for helping solve this task by find the minimum cost.

Input

The input consists of T test cases. The number of test cases T is given in the first line of the input file. Each test case consists of several lines. Two numbers v, e (0 ≤ v, e ≤ 50000) are given in the first line of each test case. On the next line, v positive integers wi indicating the weights of v nodes are given in one line. On the following e lines, each line contain three positive integers a, b, c indicating the edge which is able to connect two nodes a and b, and unit price c.

All numbers in input are less than 216.

Output

For each test case, output an integer indicating the minimum possible cost for the tree in one line. If there is no way to build a Christmas tree, print “No Answer” in one line.

Sample Input

2
2 1
1 1
1 2 15
7 7
200 10 20 30 40 50 60
1 2 1
2 3 3
2 4 2
3 5 4
3 7 2
3 6 3
1 5 9

Sample Output

15
1210


#include <iostream>
#include <cstdio>
#include <vector>
#include <queue>
#include <functional>
#include <cstring>

using namespace std;

typedef long long ll;

const int maxn=5e4+10;
const ll inf=1e18;

vector<pair<int,ll> > G[maxn];
ll d[maxn];
int co[maxn];
bool inq[maxn];
int n,m;

void init(){
    for(int i=0;i<maxn;i++) G[i].clear();
    for(int i=0;i<maxn;i++) d[i]=inf;
    memset(co,0,sizeof(co));
    memset(inq,0,sizeof(inq));
}

ll dijkstra(int s){
    priority_queue<pair<ll,int>,vector<pair<ll,int> >,greater<pair<ll,int> > > q;
    int cou=0;
    ll ans=0;
    d[s]=0;
    q.push(make_pair(d[s],s));
    while(!q.empty()){
        int now=q.top().second;
        q.pop();
        if(inq[now]) continue;
        inq[now]=1;
        cou++;
        ans+=d[now]*co[now];
        for(int i=0;i<G[now].size();i++){
            int v=G[now][i].first;
            if(d[v]>d[now]+G[now][i].second){
                d[v]=d[now]+G[now][i].second;
                q.push(make_pair(d[v],v));
            }
        }
    }
    if(cou<n) return -1;
    else return ans;
}

int main(){
    int T;
    scanf("%d",&T);
    while(T--){
        init();
        scanf("%d %d",&n,&m);
        for(int i=1;i<=n;i++){
            scanf("%d",&co[i]);
        }
        for(int i=0;i<m;i++){
            int s,t,v;
            scanf("%d %d %d",&s,&t,&v);
            G[s].push_back(make_pair(t,v));
            G[t].push_back(make_pair(s,v));
        }
        if(n==0||n==1){
            printf("0\n");
            continue;
        }
        ll ans=dijkstra(1);
        if(ans==-1) printf("No Answer\n");
        else printf("%I64d\n",ans);
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/hymscott/p/6485538.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值