import cv2
import numpy as np
def getHProjection(image):
hProjection = np.zeros(image.shape,np.uint8)
#图像高与宽
(h,w)=image.shape
#长度与图像高度一致的数组
h_ = [0]*h
#循环统计每一行白色像素的个数
for y in range(h):
for x in range(w):
if image[y,x] == 255:
h_[y]+=1
#绘制水平投影图像
for y in range(h):
for x in range(h_[y]):
hProjection[y,x] = 255
cv2.imshow('hProjection2',hProjection)
return h_
def getVProjection(image):
vProjection = np.zeros(image.shape,np.uint8);
#图像高与宽
(h,w) = image.shape
#长度与图像宽度一致的数组
w_ = [0]*w
#循环统计每一列白色像素的个数
for x in range(w):
for y in range(h):
if image[y,x] == 255:
w_[x]+=1
#绘制垂直平投影图像
for x in range(w):
for y in range(h-w_[x],h):
vProjection[y,x] = 255
#cv2.imshow('vProjection',vProjection)
return w_
if __name__ == "__main__":
#读入原始图像
origineImage = cv2.imread('test.jpg')
# 图像灰度化
#image = cv2.imread('test.jpg',0)
image = cv2.cvtColor(origineImage,cv2.COLOR_BGR2GRAY)
cv2.imshow('gray',image)
# 将图片二值化
retval, img = cv2.threshold(image,127,255,cv2.THRESH_BINARY_INV)
cv2.imshow('binary',img)
#图像高与宽
(h,w)=img.shape
Position = []
#水平投影
H = getHProjection(img)
start = 0
H_Start = []
H_End = []
#根据水平投影获取垂直分割位置
for i in range(len(H)):
if H[i] > 0 and start ==0:
H_Start.append(i)
start = 1
if H[i] <= 0 and start == 1:
H_End.append(i)
start = 0
#分割行,分割之后再进行列分割并保存分割位置
for i in range(len(H_Start)):
#获取行图像
cropImg = img[H_Start[i]:H_End[i], 0:w]
#cv2.imshow('cropImg',cropImg)
#对行图像进行垂直投影
W = getVProjection(cropImg)
Wstart = 0
Wend = 0
W_Start = 0
W_End = 0
for j in range(len(W)):
if W[j] > 0 and Wstart ==0:
W_Start =j
Wstart = 1
Wend=0
if W[j] <= 0 and Wstart == 1:
W_End =j
Wstart = 0
Wend=1
if Wend == 1:
Position.append([W_Start,H_Start[i],W_End,H_End[i]])
Wend =0
#根据确定的位置分割字符
for m in range(len(Position)):
cv2.rectangle(origineImage, (Position[m][0],Position[m][1]), (Position[m][2],Position[m][3]), (0 ,229 ,238), 1)
cv2.imshow('image',origineImage)
cv2.waitKey(0)`