257. Binary Tree Paths

本文介绍了一种算法,用于寻找二叉树中从根节点到叶子节点的所有路径。通过递归、深度优先搜索(DFS)结合栈,以及广度优先搜索(BFS)结合队列三种方法实现。每种方法都有详细的代码示例,分别用C++、Java和Python语言展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given a binary tree, return all root-to-leaf paths.

Note: A leaf is a node with no children.

Example:

Input:

   1
 /   \
2     3
 \
  5

Output: ["1->2->5", "1->3"]

Explanation: All root-to-leaf paths are: 1->2->5, 1->3

 

Approach #1: C++. [recursive]

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    vector<string> binaryTreePaths(TreeNode* root) {
        vector<string> ans;
        if (root == NULL) return ans;
        helper(root, ans, "");
        return ans;
    }
    
private:
    void helper(TreeNode* root, vector<string>& ans, string str) {
        if (root == NULL) return;

        if (str == "") str += to_string(root->val);
        else str += "->" + to_string(root->val);
        
        if (root->left == NULL && root->right == NULL) 
            ans.push_back(str);
        
        helper(root->left, ans, str);
        helper(root->right, ans, str);
    }
};

  

Approach #2: Java. [dfs + stack]

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public List<String> binaryTreePaths(TreeNode root) {
        List<String> ans = new ArrayList<>();
        
        if (root == null) return ans;
        
        Stack<TreeNode> sNode = new Stack<>();
        Stack<String> sStr = new Stack<>();
        sNode.push(root);
        sStr.push("");
        
        while (!sNode.isEmpty()) {
            TreeNode curNode = sNode.pop();
            String curStr = sStr.pop();
            if (curNode.left == null && curNode.right == null) ans.add(curStr+curNode.val);
            if (curNode.left != null) {
                sNode.push(curNode.left);
                sStr.push(curStr + curNode.val + "->");
            }
            if (curNode.right != null) {
                sNode.push(curNode.right);
                sStr.push(curStr + curNode.val + "->");
            }
        }
        
        return ans;
    }
}

  

Appraoch #3: Python. [bfs + queue]

# Definition for a binary tree node.
# class TreeNode(object):
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution(object):
    def binaryTreePaths(self, root):
        """
        :type root: TreeNode
        :rtype: List[str]
        """
        if not root:
            return []
        res, queue = [], collections.deque([(root, "")])
        while queue:
            node, ls = queue.popleft()
            if not node.left and not node.right:
                res.append(ls + str(node.val))
            if node.left:
                queue.append((node.left, ls + str(node.val) + "->"))
            if node.right:
                queue.append((node.right, ls + str(node.val) + "->"))
        return res

  

 

转载于:https://www.cnblogs.com/ruruozhenhao/p/10105541.html

以下是一个简单的二叉树实现的Java代码,包含了输出所有直径及其路径长度的方法: ```java public class BinaryTree<T> { private Node<T> root; // 构造函数 public BinaryTree(Node<T> root) { this.root = root; } // 节点类 private static class Node<T> { private T data; private Node<T> left; private Node<T> right; public Node(T data) { this.data = data; this.left = null; this.right = null; } } // 输出所有直径及其路径长度 public static <T> void diameterAll(BinaryTree<T> bitree) { if (bitree.root == null) { System.out.println("Binary tree is empty."); return; } List<List<Node<T>>> paths = new ArrayList<>(); List<Integer> diameters = new ArrayList<>(); findPaths(bitree.root, paths, new ArrayList<>()); calculateDiameters(bitree.root, paths, diameters); for (int i = 0; i < diameters.size(); i++) { System.out.println("Diameter: " + diameters.get(i) + ", Path: "); for (Node<T> node : paths.get(i)) { System.out.print(node.data + " "); } System.out.println(); } } // 查找所有路径 private static <T> void findPaths(Node<T> node, List<List<Node<T>>> paths, List<Node<T>> path) { if (node == null) { return; } path.add(node); if (node.left == null && node.right == null) { paths.add(new ArrayList<>(path)); } else { findPaths(node.left, paths, path); findPaths(node.right, paths, path); } path.remove(path.size() - 1); } // 计算直径 private static <T> int calculateDiameters(Node<T> node, List<List<Node<T>>> paths, List<Integer> diameters) { if (node == null) { return 0; } int leftHeight = calculateDiameters(node.left, paths, diameters); int rightHeight = calculateDiameters(node.right, paths, diameters); int diameter = leftHeight + rightHeight; diameters.add(diameter); return Math.max(leftHeight, rightHeight) + 1; } public static void main(String[] args) { // 创建二叉树示例 Node<Integer> node1 = new Node<>(1); Node<Integer> node2 = new Node<>(2); Node<Integer> node3 = new Node<>(3); Node<Integer> node4 = new Node<>(4); Node<Integer> node5 = new Node<>(5); node1.left = node2; node1.right = node3; node2.left = node4; node3.right = node5; BinaryTree<Integer> bitree = new BinaryTree<>(node1); // 输出所有直径及其路径长度 diameterAll(bitree); } } ``` 这段代码使用了二叉树的先序遍历来查找所有路径,然后计算每个路径的直径。最后,输出每个直径及其路径长度。以上是一个简单的实现,你可以根据自己的需求进行修改和扩展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值