[转]Basic OCR in OpenCV

本文提供了一个使用OpenCV实现的手写数字识别教程,详细介绍了图像预处理、特征提取和分类模块的工作流程。通过创建训练集和测试集,利用knn方法进行分类,最终展示了一个完整的手写数字识别系统的实现过程。

原文地址:http://blog.damiles.com/2008/11/basic-ocr-in-opencv/

代码下载:https://github.com/damiles/basicOCR

In this tutorial we go to create a basic number OCR. It consist to classify a handwrite number into his class.

To do it, we go to use all we learn in before tutorials, we go to use a simple basic painter and the basic pattern recognition and classification with openCV tutorial.

In a typical pattern recognition classifier consist in three modules:

Preprocessing: in this module we go to process our input image, for example size normalize, convert color to BN…

Feature extraction: in this module we convert our image processed to a characteristic vector of features to classify, it can be the pixels matrix convert to vector or get contour chain codes data representation

Classification module get the feature vectors and train our system or classify an input feature vector with a classify method as knn.

In this basic OCR we go to use this graph:

Where we get a train set and test set of image to train and test our classifier method (knn)

We have a 1000 handwrite images, 100 images of each number. We get 50 images of each number (class) to train and other 50 to test our system.

Then the first work we do is pre-process all train image, to do it we create a preprocessing function. In this function we get a image and a new width and height we want as result of preprocessing, then the function return a normalized size with bounding box image. You can see more clear the process in this graph:

Pre-processing code:

01void findX(IplImage* imgSrc,int* min, int* max){
02int i;
03int minFound=0;
04CvMat data;
05CvScalar maxVal=cvRealScalar(imgSrc->width * 255);
06CvScalar val=cvRealScalar(0);
07//For each col sum, if sum < width*255 then we find the min
08//then continue to end to search the max, if sum< width*255 then is new max
09for (i=0; i< imgSrc->width; i++){
10cvGetCol(imgSrc, &data, i);
11val= cvSum(&data);
12if(val.val[0] < maxVal.val[0]){
13*max= i;
14if(!minFound){
15*min= i;
16minFound= 1;
17}
18}
19}
20}
21 
22void findY(IplImage* imgSrc,int* min, int* max){
23int i;
24int minFound=0;
25CvMat data;
26CvScalar maxVal=cvRealScalar(imgSrc->width * 255);
27CvScalar val=cvRealScalar(0);
28//For each col sum, if sum < width*255 then we find the min
29//then continue to end to search the max, if sum< width*255 then is new max
30for (i=0; i< imgSrc->height; i++){
31cvGetRow(imgSrc, &data, i);
32val= cvSum(&data);
33if(val.val[0] < maxVal.val[0]){
34*max=i;
35if(!minFound){
36*min= i;
37minFound= 1;
38}
39}
40}
41}
42CvRect findBB(IplImage* imgSrc){
43CvRect aux;
44int xmin, xmax, ymin, ymax;
45xmin=xmax=ymin=ymax=0;
46 
47findX(imgSrc, &xmin, &xmax);
48findY(imgSrc, &ymin, &ymax);
49 
50aux=cvRect(xmin, ymin, xmax-xmin, ymax-ymin);
51 
52//printf("BB: %d,%d - %d,%d\n", aux.x, aux.y, aux.width, aux.height);
53 
54return aux;
55 
56}
57 
58IplImage preprocessing(IplImage* imgSrc,int new_width, int new_height){
59IplImage* result;
60IplImage* scaledResult;
61 
62CvMat data;
63CvMat dataA;
64CvRect bb;//bounding box
65CvRect bba;//boundinb box maintain aspect ratio
66 
67//Find bounding box
68bb=findBB(imgSrc);
69 
70//Get bounding box data and no with aspect ratio, the x and y can be corrupted
71cvGetSubRect(imgSrc, &data, cvRect(bb.x, bb.y, bb.width, bb.height));
72//Create image with this data with width and height with aspect ratio 1
73//then we get highest size betwen width and height of our bounding box
74int size=(bb.width>bb.height)?bb.width:bb.height;
75result=cvCreateImage( cvSize( size, size ), 8, 1 );
76cvSet(result,CV_RGB(255,255,255),NULL);
77//Copy de data in center of image
78int x=(int)floor((float)(size-bb.width)/2.0f);
79int y=(int)floor((float)(size-bb.height)/2.0f);
80cvGetSubRect(result, &dataA, cvRect(x,y,bb.width, bb.height));
81cvCopy(&data, &dataA, NULL);
82//Scale result
83scaledResult=cvCreateImage( cvSize( new_width, new_height ), 8, 1 );
84cvResize(result, scaledResult, CV_INTER_NN);
85 
86//Return processed data
87return *scaledResult;
88 
89}

We use the function getData of basicOCR class to create the train data and train classes, this function get all images under OCR folder to create this train data, the OCR forlder is structured with 1 folder to each class and each file have are pbm files with this name cnn.pbm where c is the class {0..9} and nn is the number of image {00..99}

Each image we get is pre-processed and then convert the data in a feature vector we use.

basicOCR.cpp getData code:

01void basicOCR::getData()
02{
03IplImage* src_image;
04IplImage prs_image;
05CvMat row,data;
06char file[255];
07int i,j;
08for(i =0; i<classes; i++){
09for( j = 0; j< train_samples; j++){
10 
11//Load file
12if(j<10)
13sprintf(file,"%s%d/%d0%d.pbm",file_path, i, i , j);
14else
15sprintf(file,"%s%d/%d%d.pbm",file_path, i, i , j);
16src_image = cvLoadImage(file,0);
17if(!src_image){
18printf("Error: Cant load image %s\n", file);
19//exit(-1);
20}
21//process file
22prs_image = preprocessing(src_image, size, size);
23 
24//Set class label
25cvGetRow(trainClasses, &row, i*train_samples + j);
26cvSet(&row, cvRealScalar(i));
27//Set data
28cvGetRow(trainData, &row, i*train_samples + j);
29 
30IplImage* img = cvCreateImage( cvSize( size, size ), IPL_DEPTH_32F, 1 );
31//convert 8 bits image to 32 float image
32cvConvertScale(&prs_image, img, 0.0039215, 0);
33 
34cvGetSubRect(img, &data, cvRect(0,0, size,size));
35 
36CvMat row_header, *row1;
37//convert data matrix sizexsize to vecor
38row1 = cvReshape( &data, &row_header, 0, 1 );
39cvCopy(row1, &row, NULL);
40}
41}
42}

After processed and get train data and classes whe then train our model with this data, in our sample we use knn method then:

1knn=new CvKNearest( trainData, trainClasses, 0, false, K );

Then we now can test our model, and we can use the test result to compare to another methods we can use, or if we reduce the image scale or similar. There are a function to create the test in our basicOCR class, test function.

This function get the other 500 samples and classify this in our selected method and check the obtained result.

01void basicOCR::test(){
02IplImage* src_image;
03IplImage prs_image;
04CvMat row,data;
05char file[255];
06int i,j;
07int error=0;
08int testCount=0;
09for(i =0; i<classes; i++){
10for( j = 50; j< 50+train_samples; j++){
11 
12sprintf(file,"%s%d/%d%d.pbm",file_path, i, i , j);
13src_image = cvLoadImage(file,0);
14if(!src_image){
15printf("Error: Cant load image %s\n", file);
16//exit(-1);
17}
18//process file
19prs_image = preprocessing(src_image, size, size);
20float r=classify(&prs_image,0);
21if((int)r!=i)
22error++;
23 
24testCount++;
25}
26}
27float totalerror=100*(float)error/(float)testCount;
28printf("System Error: %.2f%%\n", totalerror);
29 
30}

Test use the classify function that get image to classify, process image, get feature vector and classify it with a find_nearest of knn class. This function we use to classify the input user images:

01float basicOCR::classify(IplImage* img, int showResult)
02{
03IplImage prs_image;
04CvMat data;
05CvMat* nearest=cvCreateMat(1,K,CV_32FC1);
06float result;
07//process file
08prs_image = preprocessing(img, size, size);
09 
10//Set data
11IplImage* img32 = cvCreateImage( cvSize( size, size ), IPL_DEPTH_32F, 1 );
12cvConvertScale(&prs_image, img32, 0.0039215, 0);
13cvGetSubRect(img32, &data, cvRect(0,0, size,size));
14CvMat row_header, *row1;
15row1 = cvReshape( &data, &row_header, 0, 1 );
16 
17result=knn->find_nearest(row1,K,0,0,nearest,0);
18 
19int accuracy=0;
20for(int i=0;i<K;i++){
21if( nearest->data.fl[i] == result)
22accuracy++;
23}
24float pre=100*((float)accuracy/(float)K);
25if(showResult==1){
26printf("|\t%.0f\t| \t%.2f%%  \t| \t%d of %d \t| \n",result,pre,accuracy,K);
27printf(" ---------------------------------------------------------------\n");
28}
29 
30return result;
31 
32}

All work or training and test is in basicOCR class, when we create a basicOCR instance then only we need call to classify function to classify our input image. Then we go to use basic Painter we create before in other tutorial to user interactivity to draw a image and classify it.

转载于:https://www.cnblogs.com/FoundationSoft/archive/2013/01/01/2841718.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值