UVA 10229 Modular Fibonacci

本文介绍了一种使用矩阵快速幂取模的方法来解决UVA_10229问题,该方法通过将斐波那契数列转换为矩阵形式,并利用快速幂取模技巧高效计算特定项的值。

UVA_10229

    将斐波那契数用矩阵形式表示,然后再做快速幂取模即可。

#include<stdio.h>
#include<string.h>
#define MAXD 50
long long int N, M, D, a[MAXD][4], b[4];
void pow_mod(long long int n, int e)
{
if(n == 1)
{
a[e][0] = a[e][1] = a[e][2] = 1;
a[e][3] = 0;
return ;
}
pow_mod(n / 2, e + 1);
a[e][0] = (a[e + 1][0] * a[e + 1][0] + a[e + 1][1] * a[e + 1][2]) % D;
a[e][1] = (a[e + 1][0] * a[e + 1][1] + a[e + 1][1] * a[e + 1][3]) % D;
a[e][2] = (a[e + 1][2] * a[e + 1][0] + a[e + 1][3] * a[e + 1][2]) % D;
a[e][3] = (a[e + 1][2] * a[e + 1][1] + a[e + 1][3] * a[e + 1][3]) % D;
if(n % 2)
{
b[0] = (a[e][0] * a[0][0] + a[e][1] * a[0][2]) % D;
b[1] = (a[e][0] * a[0][1] + a[e][1] * a[0][3]) % D;
b[2] = (a[e][2] * a[0][0] + a[e][3] * a[0][2]) % D;
b[3] = (a[e][2] * a[0][1] + a[e][3] * a[0][3]) % D;
a[e][0] = b[0], a[e][1] = b[1], a[e][2] = b[2], a[e][3] = b[3];
}
}
void solve()
{
int i;
D = 1;
for(i = 0; i < M; i ++)
D <<= 1;
pow_mod(N - 1, 1);
printf("%lld\n", a[1][0]);
}
int main()
{
a[0][0] = a[0][1] = a[0][2] = 1;
a[0][3] = 0;
while(scanf("%lld%lld", &N, &M) == 2)
{
if(N == 0 || M == 0)
printf("0\n");
else if(N == 1)
printf("1\n");
else
solve();
}
return 0;
}


转载于:https://www.cnblogs.com/staginner/archive/2011/12/15/2288872.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值