05-图1. List Components (25)
For a given undirected graph with N vertices and E edges, please list all the connected components by both DFS and BFS. Assume that all the vertices are numbered from 0 to N-1. While searching, assume that we always start from the vertex with the smallest index, and visit its adjacent vertices in ascending order of their indices.
Input Specification:
Each input file contains one test case. For each case, the first line gives two integers N (0<N<=10) and E, which are the number of vertices and the number of edges, respectively. Then E lines follow, each described an edge by giving the two ends. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print in each line a connected component in the format "{ v1 v2 ... vk }". First print the result obtained by DFS, then by BFS.
Sample Input:8 6 0 7 0 1 2 0 4 1 2 4 3 5Sample Output:
{ 0 1 4 2 7 } { 3 5 } { 6 } { 0 1 2 7 4 } { 3 5 } { 6 }
#include <stdio.h>
void DFS(int graph[][10], int *visited, int v, int n, int *ret) {
visited[v] = 1;
ret[++ret[0]] = v;
for (int i = 0; i < n; ++i) {
if (v != i && graph[v][i] && !visited[i]) {
DFS(graph, visited, i, n, ret);
}
}
}
void BFS(int graph[][10], int *visited, int v, int n) {
int queque[20] = {};
int head = 0, rear = 0;
queque[rear++] = v; //入队
visited[v] = 1;
printf("{ ");
while (rear > head) {
int curr = queque[head++]; //出队
printf("%d ", curr);
for (int i = 0; i < n; ++i) //将每一个每訪问过的邻接节点入队
if (graph[curr][i] && !visited[i]) {
visited[i] = 1;
queque[rear++] = i;
}
}
printf("}\n");
}
int main() {
// freopen("test.txt", "r", stdin);
int n, edge;
scanf("%d%d", &n, &edge);
int graph[10][10] = {};
for (int i = 0; i < edge; ++i) { //邻接矩阵方式构造图
int v1, v2;
scanf("%d%d", &v1, &v2);
graph[v1][v2] = 1;
graph[v2][v1] = 1;
}
int visited[10] = {};
for (int i = 0; i < n; ++i) {
int ret[11] = {}; //保存递归遍历到的节点
if (!visited[i]) {
DFS(graph, visited, i, n, ret);
printf("{ ");
for (int j = 1; j <= ret[0]; ++j) {
printf("%d ", ret[j]);
}
printf("}\n");
}
}
for (int i = 0; i < n; ++i) //重置已訪问标记
visited[i] = 0;
for (int i = 0; i < n; ++i) { //BFS
if (!visited[i]) {
BFS(graph, visited, i, n);
}
}
return 0;
}