课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 0、学习目标...

本文详细介绍了构建逻辑回归模型的方法,并将其构造成一个浅层神经网络。此外还讲解了实现ML算法的主要步骤,包括预测、导数计算及梯度下降等。通过本文,读者将学会如何实现计算效率高且高度向量化版本的模型,并了解如何用反向传播思维来计算逻辑回归的导数。

1. Build a logistic regression model, structured as a shallow neural network
2. Implement the main steps of an ML algorithm, including making predictions, derivative computation, and gradient descent.
3. Implement computationally efficient, highly vectorized, versions of models.
4. Understand how to compute derivatives for logistic regression, using a backpropagation mindset.
5. Become familiar with Python and Numpy
6. Work with iPython Notebooks
7. Be able to implement vectorization across multiple training examples

----------------------------------------------中文翻译---------------------------------------------------------------

1. 构建一个逻辑回归模型, 构造成一个浅层神经网络
2. 实现 ML 算法的主要步骤, 包括进行预测、导数计算和梯度下降。
3. 实现计算效率高、高度向量化的模型版本。
4. 理解如何用反向传播的思维来计算逻辑回归的导数。
5. 熟悉 Python 和 Numpy
6. 使用 iPython Notebooks
7. 能够在多个训练样本中实现向量化

转载于:https://www.cnblogs.com/hezhiyao/p/7810887.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值