[数分提高]2014-2015-2第2教学周第1次课

本文通过构造性证明方法,展示了如何证明数列的特定形式趋近于其极限值。利用极限定义,结合不等式的性质,成功证明了给定数列的极限为a。

设 $a_n\to a$, 试证: $$\bex \vlm{n}\frac{a_1+2a_2+\cdots+na_n}{1+2+\cdots+n}=a. \eex$$

 

 

 

证明: (1). 用 $a_n-a$ 代替 $a_n$ 而不妨设 $a=0$. (2). 设 $a_n\to 0$, 则 $$\bex \forall\ \ve>0,\ \exists\ N_1,\st n>N_1\ra |a_n|<\frac{\ve}{2}. \eex$$ 对上述 $N_1$, 由 $\dps{\vlm{n}\frac{a_1+2a_2+\cdots+N_1a_{N_1}}{1+2+\cdots+n}=0}$ 知 $\exists\ N>N_1,\st n\geq N$, $$\beex \bea &\quad\frac{|a_1+2a_2+\cdots+N_1a_{N_1}}{1+2+\cdots+n}<\frac{\ve}{2}\\ &\ra \sev{\frac{a_1+2a_2+\cdots+na_n}{1+2+\cdots+n}} \leq \frac{|a_1+2a_2+\cdots+N_1a_{N_1}|}{1+2+\cdots+n} +\frac{|(N_1+1)a_{N_1+1}+\cdots+na_n|}{1+2+\cdots+n}\\ &\quad<\frac{\ve}{2}+\frac{(N_1+1)+\cdots+n}{1+2+\cdots+n}\cdot \frac{\ve}{2}<\ve. \eea \eeex$$

转载于:https://www.cnblogs.com/zhangzujin/p/4335369.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值