Leetcode Week7 Gas Station

探讨了在一个环形路线上,如何确定从哪个加油站开始能够绕行一圈而不致油尽途穷的问题。通过计算各站加油量与行驶成本的差值,采用最大子数组算法找出最优起点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Question

There are N gas stations along a circular route, where the amount of gas at station i is gas[i].

You have a car with an unlimited gas tank and it costs cost[i] of gas to travel from station i to its next station (i+1). You begin the journey with an empty tank at one of the gas stations.

Return the starting gas station's index if you can travel around the circuit once in the clockwise direction, otherwise return -1.

Note:

  • If there exists a solution, it is guaranteed to be unique.
  • Both input arrays are non-empty and have the same length.
  • Each element in the input arrays is a non-negative integer.

Example 1:

Input: 
gas  = [1,2,3,4,5]
cost = [3,4,5,1,2]

Output: 3

Explanation:
Start at station 3 (index 3) and fill up with 4 unit of gas. Your tank = 0 + 4 = 4
Travel to station 4. Your tank = 4 - 1 + 5 = 8
Travel to station 0. Your tank = 8 - 2 + 1 = 7
Travel to station 1. Your tank = 7 - 3 + 2 = 6
Travel to station 2. Your tank = 6 - 4 + 3 = 5
Travel to station 3. The cost is 5. Your gas is just enough to travel back to station 3.
Therefore, return 3 as the starting index.

Example 2:

Input: 
gas  = [2,3,4]
cost = [3,4,3]

Output: -1

Explanation:
You can't start at station 0 or 1, as there is not enough gas to travel to the next station.
Let's start at station 2 and fill up with 4 unit of gas. Your tank = 0 + 4 = 4
Travel to station 0. Your tank = 4 - 3 + 2 = 3
Travel to station 1. Your tank = 3 - 3 + 3 = 3
You cannot travel back to station 2, as it requires 4 unit of gas but you only have 3.
Therefore, you can't travel around the circuit once no matter where you start.

Answer

class Solution {
public:
    int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
        vector<int> fuel(gas.size());
        for (int i = 0; i < gas.size(); i++) {
            fuel[i] = gas[i]-cost[i];
        }
        int left, right, maxfuel;
        maxfuel = maxSubarraySumCircular(fuel, left, right);
        if (left <= right) {
            for (int i = right+1; i < gas.size(); i++) {
                maxfuel += fuel[i];
                if (maxfuel < 0) return -1;
            }
             for (int i = 0; i < left; i++) {
                maxfuel += fuel[i];
                if (maxfuel < 0) return -1;
            }
            return left;
        } else {
            for (int i = right+1; i < left; i++) {
                maxfuel += fuel[i];
                if (maxfuel < 0) return -1;
            }
            return left;
        }
    }
         int maxSubarraySumCircular(vector<int>& A, int &left, int &right) {
            int total = 0, maxSum = -30000, curMax = 0, minSum = 30000, curMin = 0, Start = 0, Start2 = 0, End = 0, maxStart = 0, maxEnd = 0, 
             minStart = 0, minEnd = 0;
            for (int i = 0; i < A.size(); i++) {
                int a = A[i];
                if (curMax < 0) {
                    Start = i;
                }
                curMax = max(curMax + a, a);
                if (maxSum < curMax) {
                    maxStart = Start;
                    maxEnd = i;
                }
                maxSum = max(maxSum, curMax);
                if (curMin > 0) {
                    Start2 = i;
                }
                curMin = min(curMin + a, a);
                if (minSum > curMin) {
                    minEnd = i;
                    minStart = Start2;
                }
                minSum = min(minSum, curMin);
                total += a;
            }
             if (maxSum >= total-minSum) {
                 left = maxStart;
                 right = maxEnd;
             } else {
                 left = minEnd+1;
                 right = minStart-1;
             }
            return maxSum > 0 ? max(maxSum, total - minSum) : maxSum;
    }

};

  首先计算gas和cost数组的差,得到一个有正有负的数列,然后求连续的和最大的子数列(同时也要保存最大子数列的起始位置 = start),可以转化为Find Minimum in Rotated Sorted Array II的问题。

转载于:https://www.cnblogs.com/thougr/p/10206948.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值