POJ 2954 Triangle(计算几何---Pick定理)

Triangle

Time Limit: 1000MS

 

Memory Limit: 65536K

Total Submissions: 3627

 

Accepted: 1586

Description

lattice point is an ordered pair (xy) where x and y are both integers. Given the coordinates of the vertices of a triangle (which happen to be lattice points), you are to count the number of lattice points which lie completely inside of the triangle (points on the edges or vertices of the triangle do not count).

Input

The input test file will contain multiple test cases. Each input test case consists of six integers x1y1x2y2x3, and y3, where (x1y1), (x2y2), and (x3y3) are the coordinates of vertices of the triangle. All triangles in the input will be non-degenerate (will have positive area), and −15000 ≤ x1y1x2y2x3y3 ≤ 15000. The end-of-file is marked by a test case with x1 =  y1 = x2 = y2 = x3 = y3 = 0 and should not be processed.

Output

For each input case, the program should print the number of internal lattice points on a single line.

Sample Input

0 0 1 0 0 1

0 0 5 0 0 5

0 0 0 0 0 0

Sample Output

0

6

Source

Stanford Local 2004

 解题报告:题意就是求三角形内部有多少个点(整数坐标点),利用Pick定理可以求出,多边形的面积、内部的点、及边上的点的关系满足area = in + on / 2 - 1,在内部的点的个数in = area - on / 2 + 1;题目和POJ1265相同, 下面写了两种求面积的代码

代码如下:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
using namespace std;
int on, in, area;
struct Point
{
    double x;
    double y;
    int flag;
}p[4];
int Gcd(int a, int b)//求最大公约数
{
    int temp;
    if (a < b)
    {
        temp = a;
        a = b;
        b = temp;
    }
    if (b == 0)
    {
        return a;
    }
    return Gcd(b, a % b);
}
int Abs(int a)//求绝对值
{
    if (a < 0)
    {
        return -a;
    }
    return a;
}
/*double Multi(Point p1, Point p2, Point p3)//叉乘
{
    return (p1.x - p3.x) * (p2.y - p3.y) - (p2.x - p3.x) * (p1.y - p3.y);
}*/
double Cross(Point p1, Point p2)//叉积
{
    return p1.x * p2.y - p1.y * p2.x;
}
int main()
{
    int i;
    double xx, yy;
    memset(p, 0, sizeof(p));
    while (scanf("%lf%lf", &p[0].x, &p[0].y)!= EOF)
    {
        if (p[0].x == 0 && p[0].y == 0)
        {
            p[0].flag = 1;
        }
        for (i = 1; i < 3; ++i)
        {
            scanf("%lf%lf", &p[i].x, &p[i].y);
            if (p[i].x == 0 && p[i].y == 0)
            {
                p[i].flag = 1;
            }
        }
        if (p[0].flag == 1 && p[1].flag == 1 && p[2].flag == 1)
        {
            break;
        }
        on = 0;
        area = 0;
        for (i = 0; i < 3; ++i)
        {
            xx = p[i].x - p[(i + 1) % 3].x;
            yy = p[i].y - p[(i + 1) % 3].y;
            on += Gcd(Abs(xx), Abs(yy));
            area += Cross(p[i], p[(i + 1) % 3]);
        }
        area = Abs(area) / 2;
        //area = Abs(Multi(p[0], p[1], p[2])) / 2;
        in = (int)(area - on / 2 + 1);//利用Pick定理
        printf("%d\n", in);
    }
    return 0;
}

转载于:https://www.cnblogs.com/lidaojian/archive/2012/05/06/2486491.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值