[Machine Learning for Trading] {ud501} Lesson 9: 01-08 Optimizers: Building a parameterized model | ...

本文探讨了优化器的基本概念及其在解决复杂问题中的应用,特别是如何通过优化算法找到最佳的投资组合,以实现风险与收益的最佳平衡。文章还讨论了在优化过程中容易解决的指标,如累积回报,以及其在风险管理方面的局限性。

What is an optimizer?

 

 

 

 Minimization example

 

 

 

 

 

 

 

 How to defeat a minimizer

 

 

 

 

 Convex problems

 

 

 

 Building a parameterized model

 

 

 

 

 

 

 Minimizer finds coefficients

 

 

 

 




 

 

 

 

 What is portfolio optimization?

 

 

 

The difference optimization can make 

 

 

Which criteria is easiest to solve for? 

 

Cumulative return is the most trivial measure to use - simply investing all your money in the stock with maximum return (and none in others) would be your optimal portfolio, in this case.

Hence, it is the easiest to solve for. But probably not the best for risk mitigation.

 

 

 

 

 Framing the problem

 

 

 

 

 

 Ranges and constraints

 

转载于:https://www.cnblogs.com/ecoflex/p/10972798.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值