Codeforces #471

本文针对C、D、E、F四道算法竞赛题目提供了解决方案,包括分段枚举、扩展KMP、去绝对值优化及DP计数等技巧。通过对每道题目的深入分析,提出了高效的时间复杂度解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

C(分段)

题意:

分析:

  我们分别考虑p=2和p>=3的情况
  当p=2的时候,个数明显是[L,R]内完全平方数的个数

  当p>=3的时候,我们注意到这样的数字个数是1e6级别的,且a最多也不超过1e6

  我们可以对于每个a去枚举对应的p,然后丢到一个set里去重

  还有一点要注意的,p=2可能会和p>=3的情况重复,所以我们还要从set里去除所有的完全平方数

  于是对于每个询问就在我们构造出的set里二分+[l,r]内完全平方数的个数

D(扩展kmp)

题意:

  给出一个长度为n的字符串s,一个长度为m的字符串t。n>=m

  输入一个整数k,你需要从字符串s中拿出两个不重合的长度为k的子串并拼接起来形成一个长度为2k的字符串f

  请问是否存在一种取法使得t是字符串f的子串?

  n,m,k<=5e5

分析:

  我们来枚举字符串t的前缀,把这个前缀作为第一个切片的后缀,把t的对应后缀作为第二个切片的前缀,看看是否可行

  为了让两个切片不相交,我们肯定想让第一个切片尽量靠左,第二个切片尽量靠右

  我们注意到处理右边切片和处理左边切片恰好是对称的,这个我们只需要把字符串逆序再同样的做法求就行了,所以我们不妨就只讨论处理左切片

  现在问题就变成了:在原串s中寻找一个尽量靠左的长度为k的子串,这个子串的长度为i的后缀恰好是pret[i]

  我们可以用exkmp预处理求出extend[i]表示s[i..n-1]与t的最长公共前缀,那么对于每个i,本质上就是找到最小的j使得extend[j]>=i且j>k-i

  我们可以从小到大枚举i,用一个set去维护满足extend[]>=i的所有下标就行了

  时间复杂度O(nlogn)

E(去绝对值)

题意:

  给定长度为n的数组a[i],你需要自己决定一个T,1<=T<=n,那么b[i]=a[i]+|T-i|

  b[i]表示b[i]秒后位置i上空的冰锥就会掉落到底面,你就无法通过该位置了

  现在有一个人从左边位置1向右边跑,如果某一时刻,该人前面的位置中有冰锥掉下来了,并且后面的位置中也有冰锥掉了下来,那么他就被困住了。

  现在你需要定一个T,使得该人被困住的时刻尽量早。

  如果不存在这样的T,那么输出-1

  n<=1e5

分析:

  最简单的想法就是枚举所有的T,然后求出该人被困住的时刻,取个最小值就行了

  假设现在我们枚举了一个T,那么b[i]就已经确定了,我们先来看个简单的问题,就是如何判断该人是否会被困住

  被困住的话,那么就是一定会存在一个i,使得b[i]<i,我们找一个满足条件的最小的i,那么该人就在i前面被挡住了不能再跑了(但要注意一点,就是有可能后面某个冰锥很早就掉下来了,他前方其实早就被封住了)

  然后这个时候的答案还需要等他后方最早的冰锥掉落

  所以该情况下的困住时刻是max(min(b[1..i-1]),min(b[i+1..n]))

  这样还是O(n^2)的,我们得优化我们的判定

  我们把b[i]中的绝对值去掉,那么就是

  b[i]=a[i]+T-i   (i<=T)

  b[i]=a[i]+i-T   (i>T)

  我们可以考虑分类讨论两种情况下满足b[i]<i的最小的i是谁,这个东西的处理和D题的是一样的,用一个set来维护就行了

  找到这个分界点i之后,问题就是对前半部分取min,对后半部分取min

  我们注意到每次T的递增只是使得整体的一段+1,一段-1,然后我们需要求区间最小值,那么这用线段树就解决了

  时间复杂度O(nlogn)

F(dp计数)

题意:

  给出一个n点的有根树,根是1。

  dp[u][k]表示在以u为根的子树里,我们需要去寻找一个子图,它是一个满k叉树,并且这个子图的深度最大,dp[u][k]就是这样的最大深度

  我们需要对所有1<=u<=n,1<=k<=n的dp[u][k]去求和,将结果输出

  n<=3e5

分析:

  我们如果按照题目的这样去设计状态,那么状态就直接爆炸了,更不需要提转移了

  我们把问题分成k=1和k>=2,k=1的情况直接树形dp就行了

  对于k>=2的情况,我们发现所有dp[u][k]中有很多数字都是重复的且连续的,因为深度不可能会很大,最多是20

  于是我们可以反过来设计状态,dp[u][dep]表示以u为根的深度为dep的子树,最大的k值是多少(因为如果存在深度为dep的k叉树,那么一定存在深度为dep的k-1叉树)

  这样状态数就是O(nlogn)了,我们再来考虑转移

  考虑枚举dep,然后就是dp[v][dep]转移到dp[u][dep]

  很明显是我们对所有的dp[v][dep]从大到小排序,然后去找个最大的k满足a[k]>=k,这个我们直接sort暴力

  复杂度是O(nlog^2n)的

 

转载于:https://www.cnblogs.com/wmrv587/p/8687179.html

内容概要:本文档提供了关于“微型车间生产线的设计与生产数据采集试验研究”的毕业设计复现代码,涵盖从论文结构生成、机械结构设计、PLC控制系统设计、生产数据采集与分析系统、有限元分析、进度管理、文献管理和论文排版系统的完整实现。通过Python代码和API调用,详细展示了各个模块的功能实现和相互协作。例如,利用SolidWorks API设计机械结构,通过PLC控制系统模拟生产流程,使用数据分析工具进行生产数据的采集和异常检测,以及利用进度管理系统规划项目时间表。 适合人群:具有机械工程、自动化控制或计算机编程基础的学生或研究人员,尤其是从事智能制造领域相关工作的人员。 使用场景及目标:①帮助学生或研究人员快速搭建和理解微型车间生产线的设计与实现;②提供完整的代码框架,便于修改和扩展以适应不同的应用场景;③作为教学或科研项目的参考资料,用于学习和研究智能制造技术。 阅读建议:此资源不仅包含详细的代码实现,还涉及多个学科领域的知识,如机械设计、电气控制、数据分析等。因此,在学习过程中,建议读者结合实际操作,逐步理解每个模块的功能和原理,并尝试调整参数以观察不同设置下的系统表现。同时,可以参考提供的文献资料,深入研究相关理论和技术背景。
本次的学生体质健康信息管理网站,按照用户的角色可以分为教师与学生,后台设置管理员角色来对学生的信息进行管理。,设计如下: 1、后台管理系统 后台管理系统主要是为该系统的管理员提供信息管理服务的系统,具体包括的功能模块如下: (1)管理员信息管理 (2)教师信息管理 (3)学生信息管理 (4)健康信息统计(图形化进行健康,亚健康等学生的信息数量统计) 2、教师角色的功能模块设计 教师角色所需要的功能模块主要包括了如下的一些内容: (1)个人资料修改 (2)学生体质健康管理:录入相关数据,包括但不限于身高、体重、肺活量、视力等生理指标以及运动能力、身体成分、骨密度等健康指标,并且设置健康,亚健康状态 (3)学生健康建议:根据体质信息,进行学生健康的建议 (4)健康预警:对健康出问题的学生,进行健康预警 (5)饮食和锻炼情况管理,查看 3、学生角色 学生角色可以通过该信息网站看到个人的基本信息,能够看到教师给与学生的健康建议等,功能模块设计如下: (1)个人资料修改 (2)我的健康建议查看 (3)我的健康预警 (4)饮食和锻炼情况管理,记录平时的饮食和锻炼情况 完整前后端源码,部署后可正常运行! 环境说明 开发语言:Java后端 框架:ssm,mybatis JDK版本:JDK1.8+ 数据库:mysql 5.7+ 数据库工具:Navicat11+ 开发软件:eclipse/idea Maven包:Maven3.3+ 部署容器:tomcat7.5+
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值