JZOI1062 【USACO2013JAN】invite

本文展示了一个使用C++编写的程序示例,该程序利用了标准库中的数据结构如multiset来解决一个具体的问题。通过队列和标记数组进行节点处理,确保每个组内的元素能够被正确地遍历。
#include <bits/stdc++.h>
#define ll long long
#define INF 2147483647
#define ll_INF 9223372036854775807
using namespace std;
inline int read() {
    int x = 0,tmp = 1;char ch = getchar();
    while( ch < '0' || ch > '9' ) {if ( ch == '-' ) tmp = -1; ch = getchar();}
    while( ch >= '0' && ch <= '9'){x = x * 10 + ch - '0'; ch = getchar(); }
    return x * tmp;
}
multiset< int >_group[25100];
queue< int > Q;
bool _flag[1100000];
int main() {
    memset( _flag, 0, sizeof( _flag ) );
    int N = read(), G = read();
    for( int i = 1 ; i <= G ; ++ i ) {
        int k = read();
        for( int j = 1 ; j <= k; ++ j ) _group[i].insert( read() );
    }
    Q.push( 1 );
    int tot = 1;
    _flag[1] = 1;
    while( !Q.empty() ) {
        int _now = Q.front();
        Q.pop();
        for( int i = 1 ; i <= G ; ++ i ) if( !_group[i].empty() ) {
            auto _where = _group[i].lower_bound( _now );
            if( *_where != _now ) continue; else _group[i].erase( _where );
            if( _group[i].size() == 1 ) {
                auto the_only = _group[i].begin();
                Q.push( *the_only );
                if( !_flag[(int)*the_only] ) tot ++, _flag[(int)*the_only] = 1;
                _group[i].erase( *the_only );
            }
        }
    }
    printf( "%d\n", tot );

    return 0;
}

转载于:https://www.cnblogs.com/ARZhu-NOIpAK/p/6636439.html

<think>好的,我现在需要帮助用户查找关于USACO 2024年1月竞赛中“Mooball Teams III”问题的解决方案或资料。首先,我应该先检查现有的引用内容,看看是否有相关的信息。根据用户提供的三个引用,引用[1]是关于循环舍入问题,引用[2]是多数意见问题,引用[3]是关于抓捕问题的铂金级题目。这三个引用中并没有直接提到“Mooball Teams III”的问题,所以可能需要寻找其他途径。 接下来,用户可能需要了解该问题的具体内容和要求。由于题目名称中的“Mooball Teams III”可能涉及组合优化、动态规划或图论等算法。例如,可能有关于队伍组合、最优匹配或资源分配的问题。我需要考虑常见的USACO题目类型,推测可能的解题思路。 考虑到USACO竞赛的时间,2024年1月的比赛可能较新,官方题解可能还未公开。通常USACO在比赛结束后一段时间会发布官方解答,但有时可能需要参赛者自己等待。因此,建议用户关注USACO官网或论坛,如Codeforces、Reddit的r/usaco,或者USACO Guide等平台,这些地方可能会有参赛者分享思路。 另外,可以建议用户检查问题陈述中的输入输出样例,尝试逆向推导算法。例如,如果问题涉及最大匹配,可能需要使用贪心或匈牙利算法;如果是动态规划,可能涉及状态转移方程的设计。同时,建议用户先尝试暴力解法,再逐步优化,这是常见的解题步骤。 还需要提醒用户注意数据规模,不同的算法时间复杂度是否适合题目给定的数据范围。例如,若数据量较大,可能需要O(n log n)或更优的算法,而非暴力解法。 最后,由于用户提供的引用中没有直接相关的资料,可能需要告知用户当前无法提供具体解决方案,但可以给予一般性的解题策略和资源获取建议,帮助用户自行进一步探索。</think>关于USACO 2024年1月竞赛的“Mooball Teams III”问题,目前尚未在公开平台找到完整的官方解决方案。不过可以基于USACO竞赛常见题型特点,提供以下解题思路参考: ### 可能涉及的知识点 1. **组合数学**:若题目涉及队伍组合或排列限制,可能需要使用组合数公式$C(n,k)$或容斥原理 2. **贪心算法**:在资源分配类问题中,可能需要按特定规则排序后贪心选择 3. **动态规划**:若存在状态转移关系,可能需要构建二维DP数组,例如$dp[i][j]$表示前i个元素选择j个的方案数 4. **图论建模**:若涉及团队关系约束,可能需要构建二分图进行最大匹配计算 ### 推荐实践步骤 1. **分析约束条件**:仔细阅读题目中的特殊条件,如: - 队伍人数限制 - 队员间兼容性规则 - 时间/空间复杂度要求 2. **输入输出样例解析**:通过逆向工程理解核心算法逻辑 ```python # 示例输入可能格式 3 2 # 3名队员,需组建2人队伍 1 2 # 兼容对 2 3 ``` 3. **基础代码框架**(以组合问题为例): ```python n, k = map(int, input().split()) compatible = [[] for _ in range(n+1)] # 构建兼容关系图 for _ in range(m): a, b = map(int, input().split()) compatible[a].append(b) compatible[b].append(a) # 动态规划解法示例 dp = [[0]*(k+1) for _ in range(n+1)] dp[0][0] = 1 for i in range(1, n+1): for j in range(k+1): dp[i][j] = dp[i-1][j] # 不选当前队员 if j > 0: dp[i][j] += dp[i-1][j-1] * valid_options(i) # 选当前队员的合法情况 ``` ### 资源获取建议 1. **USACO官方论坛**:竞赛结束后约2-3个月会发布题解 2. **USACO Guide**(https://usaco.guide/)查看相似题目解析 3. **Codeforces博客**搜索"USACO 2024 Jan"关键词 4. **GitHub代码库**:部分参赛者会公开AC代码(注意遵守竞赛规则)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值