【51nod】2027 期望问题

博客围绕【51nod】2027期望问题展开,讲述看不懂题解的选手在大佬讲解下明白了解题方法。先对所有a从大到小排序,设\(f_{i}\)为前i个数组成的排列的值,分析第\(i + 1\)个数插入时的情况,还考虑了数对其他数的贡献,并给出拆分计算方式。

【51nod】2027 期望问题

%%%zsy

看不懂题解的垃圾选手在zsy大佬的讲解下终于知道了这道题咋做……

先把所有\(a\)从大到小排序

\(f_{i}\)为前\(i\)个数组成的排列的值,然后显然第\(i + 1\)个插进来的时候,有\(i + 1\)个位置,而且它比谁都要大

以下默认\(f_{1}\)\(f_{k - 1}\)都是0(因为他们一定是最后弹出的,可以直接算),我们只针对排在k及以后的数讨论贡献

当第\(i\)个数加进来的时候,它有\(i\)种插入位置,前\(k - 1\)个插入位置被算的次数都是i

剩余的次数是一个首项为i,公差为-1的等差数列

然后考虑这个数对于其它的数的贡献

如果第\(i\)个数的次数是\(i\),它对前\(i - 1\)个数的排列的每个数的贡献没有任何影响

否则的话,对于前\(i - 1\)个数的排列中,若某个排列中一个数贡献为\(c\),那么它贡献+1的方案数是\(c - (k - 1)\)

我们把这两部分拆开,\(cx - (k - 1)x\),显然前半部分就是\(f_{i - 1}\),后半部分是一个常数\(k - 1\)乘上所有排在\([k,i - 1]\)的值的和再乘上排列方案数\((i - 1)!\)

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define eps 1e-10
#define ba 47
#define MAXN 1000005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
    res = 0;T f = 1;char c = getchar();
    while(c < '0' || c > '9') {
    if(c == '-') f = -1;
    c = getchar();
    }
    while(c >= '0' && c <= '9') {
    res = res * 10 +c - '0';
    c = getchar();
    }
    res *= f;
}
template<class T>
void out(T x) {
    if(x < 0) {x = -x;putchar('-');}
    if(x >= 10) {
    out(x / 10);
    }
    putchar('0' + x % 10);
}
const int MOD = 1000000007;
int N,K;
int a[MAXN],ans;
int fac[MAXN],invfac[MAXN];
int f[MAXN],s[MAXN];
u32 sd;
inline u32 Rand() {
    sd ^= sd << 13;
    sd ^= sd >> 17;
    sd ^= sd << 5;
    return sd;
}
int inc(int a,int b) {
    return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
    return 1LL * a * b % MOD;
}
void update(int &x,int y) {
    x = inc(x,y);
}
int C(int n,int m) {
    if(n < m) return 0;
    return mul(fac[n],mul(invfac[m],invfac[n - m]));
}
int getsum(int s,int l) {
    int t = s - l + 1;
    return mul(mul(inc(s,t),l),(MOD + 1) / 2);
}
int fpow(int x,int c) {
    int res = 1,t = x;
    while(c) {
    if(c & 1) res = mul(res,t);
    t = mul(t,t);
    c >>= 1;
    }
    return res;
} 
void Solve() {
    read(N);read(K);read(sd);
    for(int i = 1 ; i <= N ; ++i) {
    a[i] = Rand() % N + 1;
    }
    sort(a + 1,a + N + 1);
    s[0] = 0;
    for(int i = 1 ; i <= N ; ++i) {
    s[i] = a[i];
    update(s[i],s[i - 1]);
    }
    fac[0] = 1;
    for(int i = 1 ; i <= N ; ++i) fac[i] = mul(fac[i - 1],i);
    invfac[N] = fpow(fac[N],MOD - 2);
    for(int i = N - 1 ; i >= 0 ; --i) invfac[i] = mul(invfac[i + 1],i + 1);
    for(int i = 1 ; i <= K - 1 ; ++i) {
    update(ans,mul(mul(i,a[i]),fac[N]));
    }
    for(int i = K ; i <= N ; ++i) {
    int t = 0;
    update(t,mul(K - 1,mul(i,a[i])));
    update(t,mul(getsum(i,i - (K - 1)),a[i]));
    update(f[i],mul(t,fac[i - 1]));
    update(f[i],mul(f[i - 1],i + 1));
    int h = inc(s[i - 1],MOD - s[K - 1]);
    h = mul(h,K - 1);h = mul(h,fac[i - 1]);
    update(f[i],MOD - h);
    }
    update(ans,f[N]);
    ans = mul(ans,invfac[N]);
    out(ans);enter;
}
int main(){
#ifdef ivorysi
    freopen("f1.in","r",stdin);
#endif
    Solve();
    return 0;
}

转载于:https://www.cnblogs.com/ivorysi/p/11052724.html

下载方式:https://pan.quark.cn/s/a4b39357ea24 布线问题(分支限界算法)是计算机科学和电子工程领域中一个广为人知的议题,它主要探讨如何在印刷电路板上定位两个节点间最短的连接路径。 在这一议题中,电路板被构建为一个包含 n×m 个方格的矩阵,每个方格能够被界定为可通行或不可通行,其核心任务是定位从初始点到最终点的最短路径。 分支限界算法是处理布线问题的一种常用策略。 该算法与回溯法有相似之处,但存在差异,分支限界法仅需获取满足约束条件的一个最优路径,并按照广度优先或最小成本优先的原则来探索解空间树。 树 T 被构建为子集树或排列树,在探索过程中,每个节点仅被赋予一次成为扩展节点的机会,且会一次性生成其全部子节点。 针对布线问题的解决,队列式分支限界法可以被采用。 从起始位置 a 出发,将其设定为首个扩展节点,并将与该扩展节点相邻且可通行的方格加入至活跃节点队列中,将这些方格标记为 1,即从起始方格 a 到这些方格的距离为 1。 随后,从活跃节点队列中提取队首节点作为下一个扩展节点,并将与当前扩展节点相邻且未标记的方格标记为 2,随后将这些方格存入活跃节点队列。 这一过程将持续进行,直至算法探测到目标方格 b 或活跃节点队列为空。 在实现上述算法时,必须定义一个类 Position 来表征电路板上方格的位置,其成员 row 和 col 分别指示方格所在的行和列。 在方格位置上,布线能够沿右、下、左、上四个方向展开。 这四个方向的移动分别被记为 0、1、2、3。 下述表格中,offset[i].row 和 offset[i].col(i=0,1,2,3)分别提供了沿这四个方向前进 1 步相对于当前方格的相对位移。 在 Java 编程语言中,可以使用二维数组...
源码来自:https://pan.quark.cn/s/a4b39357ea24 在VC++开发过程中,对话框(CDialog)作为典型的用户界面组件,承担着与用户进行信息交互的重要角色。 在VS2008SP1的开发环境中,常常需要满足为对话框配置个性化背景图片的需求,以此来优化用户的操作体验。 本案例将系统性地阐述在CDialog框架下如何达成这一功能。 首先,需要在资源设计工具中构建一个新的对话框资源。 具体操作是在Visual Studio平台中,进入资源视图(Resource View)界面,定位到对话框(Dialog)分支,通过右键选择“插入对话框”(Insert Dialog)选项。 完成对话框内控件的布局设计后,对对话框资源进行保存。 随后,将着手进行背景图片的载入工作。 通常有两种主要的技术路径:1. **运用位图控件(CStatic)**:在对话框界面中嵌入一个CStatic控件,并将其属性设置为BST_OWNERDRAW,从而具备自主控制绘制过程的权限。 在对话框的类定义中,需要重写OnPaint()函数,负责调用图片资源并借助CDC对象将其渲染到对话框表面。 此外,必须合理处理WM_CTLCOLORSTATIC消息,确保背景图片的展示不会受到其他界面元素的干扰。 ```cppvoid CMyDialog::OnPaint(){ CPaintDC dc(this); // 生成设备上下文对象 CBitmap bitmap; bitmap.LoadBitmap(IDC_BITMAP_BACKGROUND); // 获取背景图片资源 CDC memDC; memDC.CreateCompatibleDC(&dc); CBitmap* pOldBitmap = m...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值