Codeforces Round #456 (Div. 2) B. New Year's Eve

本文介绍了一个关于新年夜糖果选择的问题,目标是找到从n种不同口味糖果中选取k个,使得这些糖果口味异或和最大。文章给出了两种解决思路及代码实现。

B. New Year's Eve

time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Since Grisha behaved well last year, at New Year's Eve he was visited by Ded Moroz who brought an enormous bag of gifts with him! The bag contains n sweet candies from the good ol' bakery, each labeled from 1 to n corresponding to its tastiness. No two candies have the same tastiness.

The choice of candies has a direct effect on Grisha's happiness. One can assume that he should take the tastiest ones — but no, the holiday magic turns things upside down. It is the xor-sum of tastinesses that matters, not the ordinary sum!

A xor-sum of a sequence of integers a1, a2, ..., am is defined as the bitwise XOR of all its elements: , here denotes the bitwise XOR operation; more about bitwise XOR can be found here.

Ded Moroz warned Grisha he has more houses to visit, so Grisha can take no more than k candies from the bag. Help Grisha determine the largest xor-sum (largest xor-sum means maximum happiness!) he can obtain.

Input

The sole string contains two integers n and k (1 ≤ k ≤ n ≤ 1018).

Output

Output one number — the largest possible xor-sum.

Examples

Input

4 3

Output

7

Input

6 6

Output

7

Note

In the first sample case, one optimal answer is 1, 2 and 4, giving the xor-sum of 7.

In the second sample case, one can, for example, take all six candies and obtain the xor-sum of 7.

 

一眼题,当k为1输出本身,k不为1时,要让异或最大,则最高位以下(包括最高位)的的二进制全为1,或者像我第一反应一样打表2333(蠢哭)...

正常代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int main()
{
    ll n,k;
    scanf("%lld%lld",&n,&k);
    if(k==1)printf("%lld\n",n);
    else
    {
        ll r=0;
        while(n)n>>=1,r=r<<1|1;
        printf("%lld\n",r);
    }
    return 0;
}

 蠢哭代码:

#include<bits/stdc++.h>
//******************************************************
#define lrt (rt*2)
#define rrt  (rt*2+1)
#define LL long long
#define inf 0x3f3f3f3f
#define pi acos(-1.0)
#define exp 1e-8
//***************************************************
#define eps             1e-8
#define inf             0x3f3f3f3f
#define INF             2e18
#define LL              long long
#define ULL             unsigned long long
#define PI              acos(-1.0)
#define pb              push_back
#define mk              make_pair

#define all(a)          a.begin(),a.end()
#define rall(a)         a.rbegin(),a.rend()
#define SQR(a)          ((a)*(a))
#define Unique(a)       sort(all(a)),a.erase(unique(all(a)),a.end())
#define min3(a,b,c)     min(a,min(b,c))
#define max3(a,b,c)     max(a,max(b,c))
#define min4(a,b,c,d)   min(min(a,b),min(c,d))
#define max4(a,b,c,d)   max(max(a,b),max(c,d))
#define max5(a,b,c,d,e) max(max3(a,b,c),max(d,e))
#define min5(a,b,c,d,e) min(min3(a,b,c),min(d,e))
#define Iterator(a)     __typeof__(a.begin())
#define rIterator(a)    __typeof__(a.rbegin())
#define FastRead        ios_base::sync_with_stdio(0);cin.tie(0)
#define CasePrint       pc('C'); pc('a'); pc('s'); pc('e'); pc(' '); write(qq++,false); pc(':'); pc(' ')
#define vi              vector <int>
#define vL              vector <LL>
#define For(I,A,B)      for(int I = (A); I < (B); ++I)
#define FOR(I,A,B)      for(int I = (A); I <= (B); ++I)
#define rFor(I,A,B)     for(int I = (A); I >= (B); --I)
#define Rep(I,N)        For(I,0,N)
#define REP(I,N)        FOR(I,1,N)
using namespace std;
const int maxn=1e5+10;
vector<int>Q[maxn];
const int MOD=1e9+7;
LL lev[65],sta[65];
void pre()
{
    Rep(i,62) lev[i]=(1LL<<i)-1;
    sta[0]=1;
    REP(i,61) sta[i]=sta[i-1]<<1;
    Rep(i,62) lev[62]+=sta[i];
}

int main()
{
    FastRead;
    LL k,n;
    pre();
    cin>>n>>k;
        if(k==1) cout<<n<<endl;
        else
        {
            for(int i=0;i<=61;i++)
                if(n>=lev[i]&&n<=lev[i+1])
                {
                    cout<<lev[i+1]<<endl;
                    break;
                }
        }

    return 0;
}
View Code

 

 

 

 

 

 

 

 

转载于:https://www.cnblogs.com/weimeiyuer/p/8214708.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值