2019ICPC南京网络赛A题 The beautiful values of the palace(三维偏序)

2019ICPC南京网络赛A题

The beautiful values of the palace

https://nanti.jisuanke.com/t/41298

Here is a square matrix of n * nnn, each lattice has its value (nn must be odd), and the center value is n * nnn. Its spiral decline along the center of the square matrix (the way of spiral decline is shown in the following figure:)

img

img

The grid in the lower left corner is (1,1) and the grid in the upper right corner is (n , n)

Now I can choose mm squares to build palaces, The beauty of each palace is equal to the digital sum of the value of the land which it is located. Such as (the land value is 123213123213,the beautiful values of the palace located on it is 1+2+3+2+1+3=121+2+3+2+1+3=12) (666666 -> 1818) (456456 ->1515)

Next, we ask pp times to the sum of the beautiful values of the palace in the matrix where the lower left grid(x_1,y_1x1,y1), the upper right square (x_2,y_2x2,y2).

Input

The first line has only one number TT.Representing TT-group of test data (T\le 5)(T≤5)

The next line is three number: n  m  pn m p

The mm lines follow, each line contains two integers the square of the palace (x, y )(x,y)

The pp lines follow, each line contains four integers : the lower left grid (x_1,y_1)(x1,y1) the upper right square (x_2,y_2)(x2,y2)

Output

Next, p_1+p_2...+p_Tp1+p2...+*p**T* lines: Represent the answer in turn(n \le 10^6)(m , p \le 10^5)(n≤106)(m,p≤105)

样例输入复制
1
3 4 4
1 1
2 2
3 3
2 3
1 1 1 1
2 2 3 3
1 1 3 3
1 2 2 3
样例输出复制
5
18
23
17

思路:

三维偏序的题目

首先根据推公式可以把每一个点在螺旋矩阵中对应的数值求出。

然后我们把m个点当做成m个加点操作,

p个询问,每一个询问分解为4个子询问,对同一个答案计算贡献。

因为根据容斥原理,我们可以把求二维前缀和分解为4个以左下角点为(0,0)的4个前缀和来处理。,

然后对x,y进行排序,

坐标相同时,一定要加点的操作排在询问前面。

然后用树桩数组来维护偏序问题即可。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}

inline void getInt(int *p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/


ll tree[maxn];
int lowbit(int x)
{
    return -x & x;
}
ll ask(int x)
{
    ll res = 0ll;
    while (x) {
        res += tree[x];
        x -= lowbit(x);
    }
    return res;
}
void add(int x, ll val)
{
    while (x < maxn) {
        tree[x] += val;
        x += lowbit(x);
    }
}
ll re_val(ll x)
{
    ll sum = 0;
    while (x > 0) {
        sum += x % 10;
        x /= 10;
    }
    return sum;
}
long long index(long long y, long long x, long long n)
{
    long long mid = (n + 1) / 2;
    long long p = max(abs(x - mid), abs(y - mid));
    long long ans = n * n - (1 + p) * p * 4;
    long long sx = mid + p, sy = mid + p;
    if (x == sx && y == sy) {
        return ans;
    } else {
        if (y == sy || x == sx - 2 * p) {
            return ans + abs(x - sx) + abs(y - sy);
        } else {
            return ans + 8 * p - abs(x - sx) - abs(y - sy);
        }
    }
}
int tot;
struct node {
    int type;
    int id;
    ll k;
    ll x, y;
    ll val;
    node() {}
    node(int tt, int idd, ll kk, ll xx, ll yy, ll vv)
    {
        id = idd;
        type = tt;
        k = kk;
        x = xx;
        y = yy;
        val = vv;
    }
} a[maxn];
bool cmp(node aa, node bb)
{
    if (aa.y != bb.y) {
        return aa.y < bb.y;
    } else if (aa.x != bb.x) {
        return aa.x < bb.x;
    } else {
        return aa.type < bb.type;
    }
}
ll ans[maxn];
void solve()
{
    repd(i, 1, tot) {
        if (a[i].type) {
            ans[a[i].id] += a[i].k * ask(a[i].x);
        } else {
            add(a[i].x, a[i].val);
        }
    }
}
int main()
{
    //freopen("D:\\code\\text\\input.txt","r",stdin);
    //freopen("D:\\code\\text\\output.txt","w",stdout);
    int t;
    du1(t);
    while (t--) {
        int n, m, p;
        du3(n, m, p);
        MS0(tree);
        tot = 0;
        repd(i, 1, m) {
            int x, y;
            du2(x, y);
            ll val = re_val(index(x, y, n));
            a[++tot] = node(0, 0, 1ll, x, y , val);
        }
        repd(i, 1, p) {
            ans[i] = 0ll;
            int lx, ly, rx, ry;
            du3(lx, ly, rx); du1(ry);
            a[++tot] = node(1, i, 1ll, rx, ry , 0);
            a[++tot] = node(1, i, 1ll, lx - 1, ly - 1 , 0);
            a[++tot] = node(1, i, -1ll, rx, ly - 1 , 0);
            a[++tot] = node(1, i, -1ll, lx - 1, ry , 0);
        }
        sort(a + 1, a + 1 + tot, cmp);
        solve();
        repd(i, 1, p) {
            printf("%lld\n", ans[i] );
        }
    }
    return 0;
}

inline void getInt(int *p)
{
    char ch;
    do {
        ch = getchar();
    } while (ch == ' ' || ch == '\n');
    if (ch == '-') {
        *p = -(getchar() - '0');
        while ((ch = getchar()) >= '0' && ch <= '9') {
            *p = *p * 10 - ch + '0';
        }
    } else {
        *p = ch - '0';
        while ((ch = getchar()) >= '0' && ch <= '9') {
            *p = *p * 10 + ch - '0';
        }
    }
}



转载于:https://www.cnblogs.com/qieqiemin/p/11580810.html

内容概要:本文档主要介绍了Intel Edge Peak (EP) 解决方案,涵盖从零到边缘高峰的软件配置和服务管理。EP解决方案旨在简化客户的入门门槛,提供一系列工具和服务,包括Edge Software Provisioner (ESP),用于构建和缓存操作系统镜像和软件栈;Device Management System (DMS),用于远程集群或本地集群管理;以及Autonomous Clustering for the Edge (ACE),用于自动化边缘集群的创建和管理。文档详细描述了从软件发布、设备制造、运输、安装到最终设备激活的全过程,并强调了在不同应用场景(如公共设施、工业厂房、海上油井和移动医院)下的具体部署步骤和技术细节。此外,文档还探讨了安全设备注册(FDO)、集群管理、密钥轮换和备份等关键操作。 适合人群:具备一定IT基础设施和边缘计算基础知识的技术人员,特别是负责边缘设备部署和管理的系统集成商和运维人员。 使用场景及目标:①帮助系统集成商和客户简化边缘设备的初始配置和后续管理;②确保设备在不同网络环境下的安全启动和注册;③支持大规模边缘设备的自动化集群管理和应用程序编排;④提供详细的密钥管理和集群维护指南,确保系统的长期稳定运行。 其他说明:本文档是详细描述了Edge Peak技术及其应用案例。文档不仅提供了技术实现的指导,还涵盖了策略配置、安全性和扩展性的考虑,帮助用户全面理解和实施Intel的边缘计算解决方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值