Pursuit For Artifacts CodeForces - 652E (Tarjan+dfs)

Pursuit For Artifacts

CodeForces - 652E

Johnny is playing a well-known computer game. The game are in some country, where the player can freely travel, pass quests and gain an experience.

In that country there are n islands and m bridges between them, so you can travel from any island to any other. In the middle of some bridges are lying ancient powerful artifacts. Johnny is not interested in artifacts, but he can get some money by selling some artifact.

At the start Johnny is in the island a and the artifact-dealer is in the island b(possibly they are on the same island). Johnny wants to find some artifact, come to the dealer and sell it. The only difficulty is that bridges are too old and destroying right after passing over them. Johnnie's character can't swim, fly and teleport, so the problem became too difficult.

Note that Johnny can't pass the half of the bridge, collect the artifact and return to the same island.

Determine if Johnny can find some artifact and sell it.

Input

The first line contains two integers n and m (1 ≤ n ≤ 3·105, 0 ≤ m ≤ 3·105) — the number of islands and bridges in the game.

Each of the next m lines contains the description of the bridge — three integers xi, yi, *z**i* (1 ≤ xi, yi ≤ n, xi ≠ yi, 0 ≤ zi ≤ 1), where xi and *y**i* are the islands connected by the i-th bridge, *z**i* equals to one if that bridge contains an artifact and to zero otherwise. There are no more than one bridge between any pair of islands. It is guaranteed that it's possible to travel between any pair of islands.

The last line contains two integers a and b (1 ≤ a, b ≤ n) — the islands where are Johnny and the artifact-dealer respectively.

Output

If Johnny can find some artifact and sell it print the only word "YES" (without quotes). Otherwise print the word "NO" (without quotes).

Examples

Input

6 71 2 02 3 03 1 03 4 14 5 05 6 06 4 01 6

Output

YES

Input

5 41 2 02 3 03 4 02 5 11 4

Output

NO

Input

5 61 2 02 3 03 1 03 4 04 5 15 3 01 2

Output

YES

题意:

给你一个含有n个节点,m个边的无向图。

以及一个起点a,终点b。

问你是否存在一个从a到b的路径,路径中一条边只走一次并且经过了一个边权为1的边。

思路:

Tarjan缩点建树,每一个强连通块中如果有1的边,,那么缩成的点权为1.

然后强连通块的之间的边(即桥)也有边权,

然后跑一遍dfs,只要有一个经过的节点或者边是权为1即为YES。

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}

inline void getInt(int *p);
const int maxn = 1000010;
int From[maxn], Laxt[maxn], To[maxn << 2], Next[maxn << 2], cnt;
bool flag[maxn];
int low[maxn], dfn[maxn], times, q[maxn], head, scc_cnt, scc[maxn];
vector<pii>G[maxn];
int dis[maxn], S, T, ans;
int check[maxn];
void add(int u, int v, int z)
{
    Next[++cnt] = Laxt[u]; From[cnt] = u;
    flag[cnt] = z;
    Laxt[u] = cnt; To[cnt] = v;
}
void tarjan(int u, int fa)
{
    dfn[u] = low[u] = ++times;
    q[++head] = u;
    for (int i = Laxt[u]; i; i = Next[i]) {
        if (To[i] == fa) { continue; }
        if (!dfn[To[i]]) {
            tarjan(To[i], u);
            low[u] = min(low[u], low[To[i]]);
        } else { low[u] = min(low[u], dfn[To[i]]); }
    }
    if (low[u] == dfn[u]) {
        scc_cnt++;
        while (true) {
            int x = q[head--];
            scc[x] = scc_cnt;
            if (x == u) { break; }
        }
    }
}
void init()
{
    memset(Laxt, 0, sizeof(Laxt));
    cnt = 0;
}
int n;
int m;
bool dfs(int S, int pre, int T, bool now)
{
    now |= check[S];
    if (S == T) {
        return now;
    }
    bool res = 0;
    for (auto y : G[S]) {
        if (y.fi != pre) {
            res |= dfs(y.fi, S, T, now | y.se);
            if (res) {
                return res;
            }
        }
    }
    return res;
}
int a, b;
int main()
{
    //freopen("D:\\code\\text\\input.txt","r",stdin);
    //freopen("D:\\code\\text\\output.txt","w",stdout);
    init();
    int N, M, u, v, i, j;
    int z;
    scanf("%d%d", &N, &M);
    for (i = 1; i <= M; i++) {
        scanf("%d%d%d", &u, &v, &z);
        add(u, v, z); add(v, u, z);
    }
    tarjan(1, 0);
    for (i = 1; i <= N; i++) {
        for (j = Laxt[i]; j; j = Next[j]) {
            if (scc[i] != scc[To[j]]) {
                G[scc[i]].push_back(make_pair(scc[To[j]], flag[j]));
            } else {
                check[scc[i]] |= flag[j];
            }
        }
    }
    int a, b;
    scanf("%d %d", &a, &b);
    a = scc[a];
    b = scc[b];
    if (a == b) {
        if (check[a]) {
            printf("YES\n");
        } else {
            printf("NO\n");
        }
    } else {
        if (dfs(a, -1, b, 0)) {
            printf("YES\n");
        } else {
            printf("NO\n");
        }
    }
    return 0;
}

inline void getInt(int *p)
{
    char ch;
    do {
        ch = getchar();
    } while (ch == ' ' || ch == '\n');
    if (ch == '-') {
        *p = -(getchar() - '0');
        while ((ch = getchar()) >= '0' && ch <= '9') {
            *p = *p * 10 - ch + '0';
        }
    } else {
        *p = ch - '0';
        while ((ch = getchar()) >= '0' && ch <= '9') {
            *p = *p * 10 + ch - '0';
        }
    }
}

转载于:https://www.cnblogs.com/qieqiemin/p/11571324.html

内容概要:本文档主要介绍了Intel Edge Peak (EP) 解决方案,涵盖从零到边缘高峰的软件配置和服务管理。EP解决方案旨在简化客户的入门门槛,提供一系列工具和服务,包括Edge Software Provisioner (ESP),用于构建和缓存操作系统镜像和软件栈;Device Management System (DMS),用于远程集群或本地集群管理;以及Autonomous Clustering for the Edge (ACE),用于自动化边缘集群的创建和管理。文档详细描述了从软件发布、设备制造、运输、安装到最终设备激活的全过程,并强调了在不同应用场景(如公共设施、工业厂房、海上油井和移动医院)下的具体部署步骤和技术细节。此外,文档还探讨了安全设备注册(FDO)、集群管理、密钥轮换和备份等关键操作。 适合人群:具备一定IT基础设施和边缘计算基础知识的技术人员,特别是负责边缘设备部署和管理的系统集成商和运维人员。 使用场景及目标:①帮助系统集成商和客户简化边缘设备的初始配置和后续管理;②确保设备在不同网络环境下的安全启动和注册;③支持大规模边缘设备的自动化集群管理和应用程序编排;④提供详细的密钥管理和集群维护指南,确保系统的长期稳定运行。 其他说明:本文档是详细描述了Edge Peak技术及其应用案例。文档不仅提供了技术实现的指导,还涵盖了策略配置、安全性和扩展性的考虑,帮助用户全面理解和实施Intel的边缘计算解决方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值