CoderForces-Round60D(1117) Magic Gems

本文探讨了一个关于魔法宝石配置的问题,其中每个魔法宝石可以分裂成多个普通宝石,目标是在限定的空间内找到所有可能的宝石配置方案。文章详细解释了如何使用动态规划和矩阵优化的方法来解决这个问题,并给出了具体的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

D. Magic Gems

time limit per test
3 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Reziba has many magic gems. Each magic gem can be split into MM normal gems. The amount of space each magic (and normal) gem takes is 11 unit. A normal gem cannot be split.

Reziba wants to choose a set of magic gems and split some of them, so the total space occupied by the resulting set of gems is NN units. If a magic gem is chosen and split, it takes MM units of space (since it is split into MM gems); if a magic gem is not split, it takes 11 unit.

How many different configurations of the resulting set of gems can Reziba have, such that the total amount of space taken is NN units? Print the answer modulo 10000000071000000007 (109+7109+7). Two configurations are considered different if the number of magic gems Reziba takes to form them differs, or the indices of gems Reziba has to split differ.

Input

The input contains a single line consisting of 22 integers NN and MM (1N10181≤N≤1018, 2M1002≤M≤100).

Output

Print one integer, the total number of configurations of the resulting set of gems, given that the total amount of space taken is NN units. Print the answer modulo 10000000071000000007 (109+7109+7).

Examples
input
Copy
4 2
output
Copy
5
input
Copy
3 2
output
Copy
3

In the first example each magic gem can split into 22 normal gems, and we know that the total amount of gems are 44.

Let 11 denote a magic gem, and 00 denote a normal gem.

The total configurations you can have is:

  • 11111111 (None of the gems split);
  • 00110011 (First magic gem splits into 22 normal gems);
  • 10011001 (Second magic gem splits into 22 normal gems);
  • 11001100 (Third magic gem splits into 22 normal gems);
  • 00000000 (First and second magic gems split into total 44 normal gems).

Hence, answer is 55.

 题解:

  • 考虑 dpdp , f[i]f[i] 表示用 ii 个单位空间的方案数,答案即为 f[n]f[n].
  • 对于一个位置,我们可以放 MagicMagic 的,占 mm 空间,也可以放 NormalNormal 的,占 11 空间.
  • 转移方程即为 f[i]=f[i1]+f[im]f[i]=f[i−1]+f[i−m] ,边界条件为 f[0]=f[1]=f[2]=f[m1]=1f[0]=f[1]=f[2]=…f[m−1]=1.
  • 直接转移是 O(n)O(n) 的,无法通过,需要矩阵优化.

 

 

也可以用杜教BM,求线性递推式;

参考代码:(矩阵快速幂)

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 typedef long long ll;
 4 #define Mod 1000000007
 5 const double PI = acos(-1.0);
 6 const double eps = 1e-6;
 7 const int INF = 0x3f3f3f3f;
 8 const int N = 100 + 5;
 9 struct Matrix {
10   ll n , m;
11   ll grid[N][N];
12   Matrix () { n = m = 0; memset(grid , 0 , sizeof(grid)); }
13 };
14 
15 Matrix mul(Matrix a,Matrix b) 
16 {
17     Matrix c;
18     c.n = a.n;c.m = b.m;
19     for(ll i=1;i<=c.n;++i)
20         for(ll j=1;j<=c.m;++j) 
21         {
22             ll cnt = 0;
23             for(ll k=1;k<=a.m;++k) 
24             {
25                 c.grid[i][j] = (c.grid[i][j] + a.grid[i][k] * b.grid[k][j]);
26                 cnt++;
27                 if(cnt % 8 == 0) c.grid[i][j] %= Mod;
28             }
29           c.grid[i][j] %= Mod;
30         }
31   return c;
32 }
33 Matrix QuickMul(Matrix a ,ll k) 
34 {
35     if(k == 1) return a;
36     Matrix mid = QuickMul(a ,(k >> 1));
37     if(k & 1) return mul(mul(mid , mid),a);
38     else return mul(mid , mid);
39 }
40 ll n , m;
41 int main() 
42 {
43     cin >> n >> m;
44     if(n < m) {return puts("1") , 0;}
45     if(n == m) return puts("2") , 0;
46     Matrix basic; basic.n = m; basic.m = 1;
47     for(ll i=1;i<=m;++i) basic.grid[i][1] = (i == m) ? 2 : 1;//{1,1,1...1,m}T
48     Matrix base; base.n = base.m = m;
49     
50     for(ll i = 1; i <= m - 1; i++) base.grid[i][i + 1] = 1;
51     base.grid[m][1] = base.grid[m][m] = 1;
52     
53     Matrix ans = mul(QuickMul(base , n - m) , basic);
54     cout << ans.grid[m][1] << endl;
55     return 0;
56 }
View Code

杜教BM

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 #define rep(i,a,n) for (int i=a;i<n;i++)
 4 #define per(i,a,n) for (int i=n-1;i>=a;i--)
 5 #define pb push_back
 6 #define mp make_pair
 7 #define all(x) (x).begin(),(x).end()
 8 #define fi first
 9 #define se second
10 #define SZ(x) ((int)(x).size())
11 typedef vector<int> VI;
12 typedef long long ll;
13 typedef pair<int,int> PII;
14 const ll mod=1000000007;
15 ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1) { if(b&1)res=res*a%mod; a=a*a%mod;  }  return res;  }
16 ll _,n,m,dp[321];
17 namespace linear_seq {
18     const int N=10010;
19     ll res[N],base[N],_c[N],_md[N];
20     vector<ll> Md;
21     void mul(ll *a,ll *b,int k)
22     {
23         rep(i,0,k+k) _c[i]=0;
24         rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]= (_c[i+j]+a[i]*b[j])%mod;
25         for (int i=k+k-1;i>=k;i--)  if (_c[i])
26             rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
27         rep(i,0,k) a[i]=_c[i];
28     }
29     int solve(ll n,VI a,VI b)
30     {
31         ll ans=0,pnt=0;
32         int k=SZ(a);
33         assert(SZ(a)==SZ(b));
34         rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;
35         Md.clear();
36         rep(i,0,k) if (_md[i]!=0) Md.push_back(i);
37         rep(i,0,k) res[i]=base[i]=0;
38         res[0]=1;
39         while ((1ll<<pnt)<=n) pnt++;
40         for (int p=pnt;p>=0;p--)
41         {
42             mul(res,res,k);
43             if ((n>>p)&1)
44             {
45                 for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
46                 rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
47             }
48         }
49         rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
50         if (ans<0) ans+=mod;
51         return ans;
52     }
53     VI BM(VI s) {
54         VI C(1,1),B(1,1);
55         int L=0,m=1,b=1;
56         rep(n,0,SZ(s)) {
57             ll d=0;
58             rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
59             if (d==0) ++m;
60             else if (2*L<=n) {
61                 VI T=C;
62                 ll c=mod-d*powmod(b,mod-2)%mod;
63                 while (SZ(C)<SZ(B)+m) C.pb(0);
64                 rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
65                 L=n+1-L; B=T; b=d; m=1;
66             } else {
67                 ll c=mod-d*powmod(b,mod-2)%mod;
68                 while (SZ(C)<SZ(B)+m) C.pb(0);
69                 rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
70                 ++m;
71             }
72         }
73         return C;
74     }
75     int gao(VI a,ll n) {
76         VI c=BM(a);
77         c.erase(c.begin());
78         rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
79         return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
80     }
81 };
82 int main()
83 {
84     scanf("%lld%lld",&n,&m);
85     vector<int> v;
86     for(int i=1;i<m;++i) v.push_back(1);
87     for(ll i=1;i<=m;++i) dp[i]=i+1,v.push_back(dp[i]);
88     for(int i=m+1;i<=10;++i) dp[i]=dp[i-1]+dp[i-m],v.push_back(dp[i]);
89 
90     printf("%lld\n",linear_seq::gao(v,n-1)%mod);
91     return 0;
92 }
View Code

 

 

转载于:https://www.cnblogs.com/songorz/p/10409004.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值