环境:
- Windows
- Python3.6
下载与安装
# linux
pip install scrapy
# Windows比较操蛋,首先解决依赖
1,pip3 install wheel # wheel官网: https://www.lfd.uci.edu/~gohlke/pythonlibs
2,pip3 install lxml
3,pip3 install pyopenssl
4.下载并安装:pywin32 # https://sourceforge.net/projects/pywin32/files/pywin32/
cmd命令行:pip3 install 你的下载目录\Twisted-17.9.0-cp36-cp36m-win_amd64.whl
5,pip3 install scrapy
使用:
# 查看帮助 scrapy -h # 查看帮助 scrapy <command> -h # 查看某个命令的帮助信息,如: scrapy shell -h # 有两种命令,其中Project-only必须切到项目目录文件夹下才能执行的,而Global的命令则在全局都可以使用 # Global commands: scrapy startproject # 创建项目 scrapy genspider # 创建爬虫程序 scrapy runspider # 运行一个独立的python文件,不必创建项目 scrapy shell # scrapy version # 查看scrapy版本信息 scrapy version -v # 查看scrapy及相关依赖包的版本信息
性能相关


# 同步调用 import requests import time def get_page(url): response = requests.get(url) if response.status_code == 200: return len(response.text) urls = [ 'https://www.baidu.com/', 'http://www.jianshu.com/', 'https://www.sina.com.cn/', 'https://www.python.org/', 'https://www.cnblogs.com/', ] stat_time = time.time() for url in urls: res = get_page(url) # 调用一个任务,就在原地等待任务结束拿到结果后才继续往后执行 print(res) stop_time = time.time() print(stop_time - stat_time) # 16.94821572303772
# 优化1,使用简单的多线程或者多进程


from multiprocessing import Process from threading import Thread import requests import time def timmer(func): def warpper(*args,**kwargs): start_time = time.time() res=func(*args,**kwargs) stop_time = time.time() print('run time is %s'%(stop_time-start_time)) return res return warpper def get_page(url): response = requests.get(url) if response.status_code == 200: response = len(response.text) print(response) return response if __name__ == '__main__': urls = [ 'https://www.baidu.com/', 'http://www.jianshu.com/', 'https://www.sina.com.cn/', 'https://www.python.org/', 'https://www.cnblogs.com/', ] @timmer def bar(urls): for url in urls: # 使用多进程 # p = Process(target=get_page,args=(url,)) # p.start() # p.join() # 耗时: 6.365699052810669 # 使用多线程 t = Thread(target=get_page,args=(url,)) t.start() t.join() # 耗时: 4.563170671463013 bar(urls) """ 在多进程比多线程耗时更多的情况: 一、是因为开启进程本身就耗费时间 二、可能因为网络环境影响 三、根电脑本身的性能也有关系 该方案的问题是: 开启多进程或都线程的方式,我们是无法无限制地开启多进程或多线程的: 在遇到要同时响应成百上千路的连接请求,则无论多线程还是多进程都会严重占据系统资源, 降低系统对外界响应效率,而且线程与进程本身也更容易进入假死状态。 """
# 优化2 进程池与线程池


from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor import requests import time def timmer(func): def warpper(*args, **kwargs): start_time = time.time() res = func(*args, **kwargs) stop_time = time.time() print('run time is %s'%(stop_time-start_time)) return res return warpper def get_page(url): print("GET: %s" %url) response = requests.get(url) if response.status_code == 200: response = len(response.text) # print(response) return response if __name__ == '__main__': urls = [ 'https://www.baidu.com/', 'http://www.jianshu.com/', 'https://www.sina.com.cn/', 'https://www.python.org/', 'https://www.cnblogs.com/', ] p = ProcessPoolExecutor(2) t = ThreadPoolExecutor(5) @timmer def bar(urls): # 使用进程池 # for url in urls: # p.submit(get_page, url) # p.shutdown(wait=True) # 使用线程池 for url in urls: t.submit(get_page, url) t.shutdown(wait=True) bar(urls) """ 在进程池决定开几个进程,也会影响耗时时间,在我测试几次,发现开2个进程耗时最短, 开5个进程,耗时最长,开一个耗时也长 """
# 优化3 进程/线程 + 回调函数


from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor import requests import time import os def timmer(func): def warpper(*args, **kwargs): start_time = time.time() res = func(*args, **kwargs) stop_time = time.time() print('run time is %s'%(stop_time-start_time)) return res return warpper def get_page(url): # print("GET: %s" %url) print('子',os.getppid()) # 每个子进程/线程 response = requests.get(url) if response.status_code == 200: response = len(response.text) # print(response) return response def callback(res): res =res.result() # print('%s parsing' % os.getpid()) # 回调函数也是主进程执行 if __name__ == '__main__': urls = [ 'https://www.baidu.com/', 'http://www.jianshu.com/', 'https://www.sina.com.cn/', 'https://www.python.org/', 'https://www.cnblogs.com/', ] p = ProcessPoolExecutor(3) t = ThreadPoolExecutor(2) @timmer def bar(urls): # 使用进程池 # for url in urls: # # print(os.getpid()) # 主进程ID # p.submit(get_page, url).add_done_callback(callback) # p.shutdown(wait=True) # 使用线程池 for url in urls: print('主',os.getppid()) t.submit(get_page, url).add_done_callback(callback) t.shutdown(wait=True) bar(urls) """ 通过多进程或多线程等方式,都能提高性能,但是存在I/O阻塞时的进程线程的浪费,所以,我们继续优化 """
# 优化4 asyncio方式


import asyncio @asyncio.coroutine def fetch_async(host,url='/'): print(host,url) reader, writer = yield from asyncio.open_connection(host,80) request_header_content = "GET %s HTTP/1.0\r\nHost: %s\r\n\r\n"%(url,host) request_header_content = bytes(request_header_content,encoding='utf8') writer.write(request_header_content) yield from writer.drain() text = yield from reader.read() print(host, url, text) writer.close() tasks = [ fetch_async('www.cnblogs.com','/neeo/'), fetch_async('www.chouti.com', '/pic/show?nid=4073644713430508&lid=10273091') ] loop = asyncio.get_event_loop() results = loop.run_until_complete(asyncio.gather(*tasks)) loop.close()
# 优化5 asyncio + aiohttp


import asyncio import aiohttp @asyncio.coroutine def fetch_async(url): print(url) response = yield from aiohttp.request('GET', url) # data = yield from response.read() # print(url, data) print(url, response) response.close() tasks = [fetch_async('http://www.baidu.com/'), fetch_async('http://www.chouti.com/')] event_loop = asyncio.get_event_loop() results = event_loop.run_until_complete(asyncio.gather(*tasks)) event_loop.close()
# 优化6 asyncio + requests


import asyncio import requests @asyncio.coroutine def fetch_async(func, *args): loop = asyncio.get_event_loop() future = loop.run_in_executor(None, func, *args) response = yield from future print(response.url, response.content) tasks = [ fetch_async(requests.get, 'http://www.cnblogs.com/wupeiqi/'), fetch_async(requests.get, 'http://dig.chouti.com/pic/show?nid=4073644713430508&lid=10273091') ] loop = asyncio.get_event_loop() results = loop.run_until_complete(asyncio.gather(*tasks)) loop.close()
# 优化7 gevent + requests


import gevent from gevent import monkey import requests monkey.patch_all() def fetch_async(method, url, req_kwargs): print(method, url, req_kwargs) response = requests.request(method=method, url=url, **req_kwargs) print(response.url, response.content) # ##### 发送请求 ##### # gevent.joinall([ # gevent.spawn(fetch_async, method='get', url='https://www.python.org/', req_kwargs={}), # gevent.spawn(fetch_async, method='get', url='https://www.yahoo.com/', req_kwargs={}), # gevent.spawn(fetch_async, method='get', url='https://github.com/', req_kwargs={}), # ]) # ##### 发送请求(协程池控制最大协程数量) ##### from gevent.pool import Pool pool = Pool(None) gevent.joinall([ pool.spawn(fetch_async, method='get', url='https://www.python.org/', req_kwargs={}), pool.spawn(fetch_async, method='get', url='https://www.yahoo.com/', req_kwargs={}), pool.spawn(fetch_async, method='get', url='https://www.github.com/', req_kwargs={}), ])
# 优化8 grequests


import grequests urls = [ 'http://www.heroku.com', 'http://python-tablib.org', 'http://httpbin.org', 'http://python-requests.org', 'http://fakedomain/', 'http://kennethreitz.com' ] # 创建没有发送的request集合 rs = (grequests.get(u) for u in urls) # 发送 grequests.map(rs) # 为了防止超时和异常发生,可以指定一个异常处理器 def exception_handler(request, exception): print("Request failed") reqs = [ grequests.get('http://httpbin.org/delay/1', timeout=0.001), grequests.get('http://fakedomain/'), grequests.get('http://httpbin.org/status/500')] grequests.map(reqs, exception_handler=exception_handler) # 另外,可以使用imap来提高性能 # github: https://github.com/kennethreitz/grequests
# 优化9 Twisted


# 示例1 from twisted.web.client import getPage, defer from twisted.internet import reactor def all_done(arg): reactor.stop() def callback(contents): print(contents) deferred_list = [] url_list = ['http://www.bing.com', 'http://www.baidu.com', ] for url in url_list: deferred = getPage(bytes(url, encoding='utf8')) deferred.addCallback(callback) deferred_list.append(deferred) dlist = defer.DeferredList(deferred_list) dlist.addBoth(all_done) reactor.run()


# 示例2 from twisted.internet import reactor from twisted.web.client import getPage import urllib.parse def one_done(arg): print(arg) reactor.stop() post_data = urllib.parse.urlencode({'check_data': 'adf'}) post_data = bytes(post_data, encoding='utf8') headers = {b'Content-Type': b'application/x-www-form-urlencoded'} response = getPage(bytes('http://dig.chouti.com/login', encoding='utf8'), method=bytes('POST', encoding='utf8'), postdata=post_data, cookies={}, headers=headers) response.addBoth(one_done) reactor.run()
# 优化10 tornado


from tornado.httpclient import AsyncHTTPClient from tornado.httpclient import HTTPRequest from tornado import ioloop def handle_response(response): """ 处理返回值内容(需要维护计数器,来停止IO循环),调用 ioloop.IOLoop.current().stop() :param response: :return: """ if response.error: print("Error:", response.error) else: print(response.body) def func(): url_list = [ 'http://www.baidu.com', 'http://www.bing.com', ] for url in url_list: print(url) http_client = AsyncHTTPClient() http_client.fetch(HTTPRequest(url), handle_response) ioloop.IOLoop.current().add_callback(func) ioloop.IOLoop.current().start()
# 可以说是史上最牛的异步I/O模块了


import select import socket import time class AsyncTimeoutException(TimeoutError): """ 请求超时异常类 """ def __init__(self, msg): self.msg = msg super(AsyncTimeoutException, self).__init__(msg) class HttpContext(object): """封装请求和相应的基本数据""" def __init__(self, sock, host, port, method, url, data, callback, timeout=5): """ sock: 请求的客户端socket对象 host: 请求的主机名 port: 请求的端口 port: 请求的端口 method: 请求方式 url: 请求的URL data: 请求时请求体中的数据 callback: 请求完成后的回调函数 timeout: 请求的超时时间 """ self.sock = sock self.callback = callback self.host = host self.port = port self.method = method self.url = url self.data = data self.timeout = timeout self.__start_time = time.time() self.__buffer = [] def is_timeout(self): """当前请求是否已经超时""" current_time = time.time() if (self.__start_time + self.timeout) < current_time: return True def fileno(self): """请求sockect对象的文件描述符,用于select监听""" return self.sock.fileno() def write(self, data): """在buffer中写入响应内容""" self.__buffer.append(data) def finish(self, exc=None): """在buffer中写入响应内容完成,执行请求的回调函数""" if not exc: response = b''.join(self.__buffer) self.callback(self, response, exc) else: self.callback(self, None, exc) def send_request_data(self): content = """%s %s HTTP/1.0\r\nHost: %s\r\n\r\n%s""" % ( self.method.upper(), self.url, self.host, self.data,) return content.encode(encoding='utf8') class AsyncRequest(object): def __init__(self): self.fds = [] self.connections = [] def add_request(self, host, port, method, url, data, callback, timeout): """创建一个要请求""" client = socket.socket() client.setblocking(False) try: client.connect((host, port)) except BlockingIOError as e: pass # print('已经向远程发送连接的请求') req = HttpContext(client, host, port, method, url, data, callback, timeout) self.connections.append(req) self.fds.append(req) def check_conn_timeout(self): """检查所有的请求,是否有已经连接超时,如果有则终止""" timeout_list = [] for context in self.connections: if context.is_timeout(): timeout_list.append(context) for context in timeout_list: context.finish(AsyncTimeoutException('请求超时')) self.fds.remove(context) self.connections.remove(context) def running(self): """事件循环,用于检测请求的socket是否已经就绪,从而执行相关操作""" while True: r, w, e = select.select(self.fds, self.connections, self.fds, 0.05) if not self.fds: return for context in r: sock = context.sock while True: try: data = sock.recv(8096) if not data: self.fds.remove(context) context.finish() break else: context.write(data) except BlockingIOError as e: break except TimeoutError as e: self.fds.remove(context) self.connections.remove(context) context.finish(e) break for context in w: # 已经连接成功远程服务器,开始向远程发送请求数据 if context in self.fds: data = context.send_request_data() context.sock.sendall(data) self.connections.remove(context) self.check_conn_timeout() if __name__ == '__main__': def callback_func(context, response, ex): """ :param context: HttpContext对象,内部封装了请求相关信息 :param response: 请求响应内容 :param ex: 是否出现异常(如果有异常则值为异常对象;否则值为None) :return: """ print(context, response, ex) obj = AsyncRequest() url_list = [ {'host': 'www.google.com', 'port': 80, 'method': 'GET', 'url': '/', 'data': '', 'timeout': 5, 'callback': callback_func}, {'host': 'www.baidu.com', 'port': 80, 'method': 'GET', 'url': '/', 'data': '', 'timeout': 5, 'callback': callback_func}, {'host': 'www.bing.com', 'port': 80, 'method': 'GET', 'url': '/', 'data': '', 'timeout': 5, 'callback': callback_func}, ] for item in url_list: print(item) obj.add_request(**item) obj.running()
扩展
参考资料
scrapy文档:https://doc.scrapy.org/en/latest/intro/tutorial.html
scrapy中文文档:http://scrapy-chs.readthedocs.io/zh_CN/0.24/intro/tutorial.html
参考博客:http://www.cnblogs.com/linhaifeng/articles/7811861.html