【BZOJ4887】[TJOI2017]可乐(矩阵快速幂)

本文介绍了一道使用矩阵快速幂解决的问题【BZOJ4887】[TJOI2017]可乐。通过给出的C++代码实现,详细展示了如何构建矩阵并利用快速幂求解特定操作后的结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【BZOJ4887】[TJOI2017]可乐(矩阵快速幂)

题面

BZOJ
洛谷

题解

模板题???

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define MAX 35
#define MOD 2017
inline int read()
{
    int x=0;bool t=false;char ch=getchar();
    while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
    if(ch=='-')t=true,ch=getchar();
    while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
    return t?-x:x;
}
int g[MAX][MAX],n,m,N;
struct Matrix{int s[MAX][MAX];int*operator[](int x){return s[x];}}A,S;
Matrix operator*(Matrix a,Matrix b)
{
    Matrix c;memset(c.s,0,sizeof(c.s));
    for(int i=1;i<=N;++i)
        for(int j=1;j<=N;++j)
            for(int k=1;k<=N;++k)
                c[i][j]=(c[i][j]+a[i][k]*b[k][j])%MOD;
    return c;
}
int main()
{
    n=read();m=read();N=n+1;
    for(int i=1,u,v;i<=m;++i)u=read(),v=read(),A[u][v]+=1,A[v][u]+=1;
    for(int i=1;i<=n;++i)A[i][i]+=1,A[i][N]+=1;A[N][N]+=1;
    for(int i=1;i<=N;++i)S[i][i]=1;
    int T=read();while(T){if(T&1)S=S*A;A=A*A;T>>=1;}
    int ans=0;for(int i=1;i<=N;++i)ans=(ans+S[1][i])%MOD;
    printf("%d\n",ans);
    return 0;
}

转载于:https://www.cnblogs.com/cjyyb/p/10611636.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值