UOJ #493.蚂蚁之旅

【题目描述】:

给你无向图的N个点和M条边,保证这M条边都不同且不会存在同一点的自环边,现在问你至少要几笔才能所有边都画一遍。(一笔画的时候笔不离开纸)
【输入描述】:

多组数据,每组数据用空行隔开。

对于每组数据,第一行两个整数N,M表示点数和边数。接下去M行每行两个整数a,b ,表示a,b之间有一条边。
【输出描述】:

对于每组数据,输出答案。
【样例输入】:

3 3
1 2
2 3
1 3

4 2
1 2
3 4

【样例输出】:

1
2

【时间限制、数据范围及描述】:

时间:1s 空间:64M

1<=N<=10^5;0<=M<=2×10^5;1<=a,b<=N

当这个无向连通图只有一个点时,这是一个孤立点,不做操作
当这个无向连通图是一条欧拉回路或欧拉路径时,只需要一笔画即可,sum++;
当这个无向连通图有大于2个奇度点,需要用奇度点的个数的二分之一笔画完,为什么?因为一笔可以消掉两个奇度点。由于对称性的缘故,一条边的左右两端点度数分别加一,倘若原来两点都是奇度点,则两端点都会变成偶度点,反之亦然,倘若两端点度数的奇偶性不同,一者为奇一者为偶,与这两点对应的点一定有奇数个奇度点,所以一个无向连通图中不可能存在奇数个奇度点,所以只需/2即可.

Code:
#include<iostream>
#include<cmath>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=200005;
struct Node{
    int _to,_next;
}e[N*2];
int head[N],re[N];
int x,tot;
bool vis[N];
void add_edge(int u,int v){
    tot++;
    e[tot]._to=v;
    e[tot]._next=head[u];
    head[u]=tot;
}
void dfs(int s){
    for(int i=head[s];i;i=e[i]._next){
        int tmp=e[i]._to;
        if(vis[tmp]==0){
            vis[tmp]=1;
            dfs(tmp);
            x+=re[tmp]%2;
        }
    }
}
int main(){
    int n,m;
    while(scanf("%d%d",&n,&m)!=EOF){
        int ans=0;
        tot=0;
        memset(head,0,sizeof(head));
        memset(re,0,sizeof(re));
        memset(vis,0,sizeof(vis));
        for(int i=1;i<=m;i++){
            int u,v;
            scanf("%d%d",&u,&v);
            add_edge(u,v);
            add_edge(v,u);
            re[u]++;
            re[v]++;
        }
        for(int i=1;i<=n;i++){
            if(vis[i]==0&&re[i]){
                x=0;
                dfs(i);
                if(x==0||x==2)ans++;
                else ans+=x/2;
            }
        }
        printf("%d\n",ans);
    }
    return 0;
}

转载于:https://www.cnblogs.com/ukcxrtjr/p/11188596.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值