hdu-5734 Acperience(数学)

本文探讨了在资源受限的设备上运行复杂卷积神经网络(CNN)的问题,并提出了一种通过权重二值化来简化网络的方法。该方法旨在寻找一个二进制向量和缩放因子以最小化原始权重与二值化权重之间的欧式距离。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:

Acperience

Time Limit: 4000/2000 MS (Java/Others)

  Memory Limit: 65536/65536 K (Java/Others)


Problem Description
 
Deep neural networks (DNN) have shown significant improvements in several application domains including computer vision and speech recognition. In computer vision, a particular type of DNN, known as Convolutional Neural Networks (CNN), have demonstrated state-of-the-art results in object recognition and detection.

Convolutional neural networks show reliable results on object recognition and detection that are useful in real world applications. Concurrent to the recent progress in recognition, interesting advancements have been happening in virtual reality (VR by Oculus), augmented reality (AR by HoloLens), and smart wearable devices. Putting these two pieces together, we argue that it is the right time to equip smart portable devices with the power of state-of-the-art recognition systems. However, CNN-based recognition systems need large amounts of memory and computational power. While they perform well on expensive, GPU-based machines, they are often unsuitable for smaller devices like cell phones and embedded electronics.

In order to simplify the networks, Professor Zhang tries to introduce simple, efficient, and accurate approximations to CNNs by binarizing the weights. Professor Zhang needs your help.

More specifically, you are given a weighted vector  W=(w1,w2,...,wn). Professor Zhang would like to find a binary vector B=(b1,b2,...,bn) (bi{+1,1}) and a scaling factor α0 in such a manner that WαB2 is minimum.

Note that  denotes the Euclidean norm (i.e. X=x21++x2n−−−−−−−−−−−√, where X=(x1,x2,...,xn)).
 

 

Input
 
There are multiple test cases. The first line of input contains an integer  T, indicating the number of test cases. For each test case:

The first line contains an integers n (1n100000) -- the length of the vector. The next line contains n integers: w1,w2,...,wn (10000wi10000).
 

 

Output
For each test case, output the minimum value of  WαB2 as an irreducible fraction "p/q" where pq are integers, q>0.
 

 

Sample Input
 
3
4
1 2 3 4
4
2 2 2 2
5
5 6 2 3 4
 

 

Sample Output
 
5/1
0/1
10/1
 
题意:
 
问∑(w[i]+x[i]*a)^2最小是多少?x[i]=1或-1;a>0;
 
思路:
 
∑(w[i]+x[i]*a)^2=∑w[i]^2+n*a^2+2*a*∑x[i]w[i];
 
∑w[i]^2是常数,现在变成了一个一元二次函数,找出它的最小值;
根据二次函数的的性质,∑x[i]w[i]尽量大,所以就很简单了;
 
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <bits/stdc++.h>
#include <stack>

using namespace std;

#define For(i,j,n) for(int i=j;i<=n;i++)
#define mst(ss,b) memset(ss,b,sizeof(ss));

typedef  long long LL;

template<class T> void read(T&num) {
    char CH; bool F=false;
    for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
    for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
    F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p) {
    if(!p) { puts("0"); return; }
    while(p) stk[++ tp] = p%10, p/=10;
    while(tp) putchar(stk[tp--] + '0');
    putchar('\n');
}

const LL mod=1e9+7;
const double PI=acos(-1.0);
const int inf=1e9;
const int N=1e5+10;
const int maxn=500+10;
const double eps=1e-6;

int a[N],n;
LL sum=0,ans=0;
 LL gcd(LL x,LL y)
 {
     if(y==0)return x;
     return gcd(y,x%y);
 }
int main()
{
        int t;
        read(t);
        while(t--)
        {
            read(n);
            sum=0,ans=0;
            For(i,1,n)
            {
                read(a[i]);
                sum=sum+(LL)a[i]*a[i];
                if(a[i]<0)ans=ans-a[i];
                else ans=ans+a[i];
            }
            LL x=(LL)n;
            LL g=gcd(x*sum-ans*ans,x);
            cout<<(x*sum-ans*ans)/g<<"/"<<x/g<<endl;


        }
        return 0;
}

  

 

转载于:https://www.cnblogs.com/zhangchengc919/p/5692885.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值