bzoj 3727: Final Zadanie 思维题

本文介绍了一种算法,用于解决特定的树形结构数据恢复问题。在一个已知树状结构中,每条边长度为1,每个节点含有未知数量的人口数。通过已给出的每个节点作为会议点时的总行走距离,逆向推算每个节点的人口数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

Description
吉丽YY了一道神题,题面是这样的:
“一棵n个点的树,每条边长度为1,第i个结点居住着a[i]个人。假设在i结点举行会议,所有人都从原住址沿着最短路径来到i结点,行走的总路程为b[i]。输出所有b[i]。”
吉丽已经造好了数据,但熊孩子把输入文件中所有a[i]给删掉了。你能帮他恢复吗?

题解:

对于节点\(u\)设其父亲为\(fa_u\).子树的\(a_i\)之和为\(sum_i\)
\(SUM = \sum_{u \in G}a_u\)
则对于任意的\(u \neq 1\)有:\(b_u - b_{fa_u} = SUM - 2*sum_u\)
\(b_1 = \sum_{u \neq 1}sum_u\)
然后我们将所有的\(b_u - b_{fa_u} = SUM - 2*sum_u\)求和
得:\(\sum (b_u - b_{fa_u}) = (n-1)*SUM - 2\sum_{u \neq 1}sum_u\)
我们将\(b_1 = \sum_{u \neq 1}sum_u\)翻倍加上去有.
\(2*b_1 = \sum (b_u - b_{fa_u}) = (n-1)*SUM\)
于是我们有:\(SUM = \frac{2*b_1 + \sum_{u \neq 1}(b_u - b_{fa_u})}{n-1}\)
既然我们得到了SUM,那么将其代入到所有的\(b_u - b_{fa_u} = SUM - 2*sum_u\)中即可

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(int &x){
    x=0;char ch;bool flag = false;
    while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
    while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
const int maxn = 300010;
int n;
struct Egde{
    int to,next;
}G[maxn<<1];
int head[maxn],cnt;
void add(int u,int v){
    G[++cnt].to = v;
    G[cnt].next = head[u];
    head[u] = cnt;
}
int b[maxn],sum[maxn],fa[maxn],a[maxn];
#define v G[i].to
void dfs1(int u){
    for(int i = head[u];i;i=G[i].next){
        if(v == fa[u]) continue;
        fa[v] = u;dfs1(v);
    }
}
void dfs2(int u){
    a[u] = sum[u];
    for(int i = head[u];i;i=G[i].next){
        if(v == fa[u]) continue;
        dfs2(v);a[u] -= sum[v];
    }
}
#undef v
inline void init(){
    memset(head,0,sizeof head);
    cnt = 0;
}
int main(){
    init();read(n);
    for(int i=1,u,v;i<n;++i){
        read(u);read(v);
        add(u,v);add(v,u);
    }
    memset(sum,0,sizeof sum);
    memset(fa,0,sizeof fa);
    for(int i=1;i<=n;++i) read(b[i]);
    dfs1(1);
    ll x = 0;
    for(int i=2;i<=n;++i){
        x += b[i] - b[fa[i]];
    }x += 2LL*b[1];
    ll SUM = x/(n-1);
    sum[1] = SUM;
    for(int i=2;i<=n;++i){
        sum[i] = SUM - (b[i] - b[fa[i]]);
        sum[i] >>= 1;
    }
    dfs2(1);
    for(int i=1;i<=n;++i){
        printf("%d",a[i]);
        if(i != n) putchar(' ');
        else putchar('\n');
    }
    return 0;
}

转载于:https://www.cnblogs.com/Skyminer/p/6601565.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值