# coding=utf-8
#python2 caffe_visualize.py
import numpy as np
import matplotlib.pyplot as plt
import os
import sys
sys.path.append("caffe/python")
sys.path.append("caffe/python/caffe")
import caffe
deploy_file_name = 'deploy.prototxt'
model_file_name = 'net_iter_25000.caffemodel'
test_img = "src.jpg"
#编写一个函数,用于显示各层的参数,padsize用于设置图片间隔空隙,padval用于调整亮度
def show_data(data, padsize=1, padval=0, name = 'conv1'):
#归一化
data-=data.min()
data/=data.max()
#根据data中图片数量data.shape[0],计算最后输出时每行每列图片数n
n = int(np.ceil(np.sqrt(data.shape[0])))
# padding = ((图片个数维度的padding),(图片高的padding), (图片宽的padding), ....)
#padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3)
#print("data.ndim = {}, data.shape = {}".format(data.ndim,data.shape))
if data.ndim is 3:
padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize))
data = np.pad(data, padding, mode='constant', constant_values=(padval, padval))
# 先将padding后的data分成n*n张图像
data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
# 再将(n, W, n, H)变换成(n*w, n*H)
data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
elif data.ndim is 1:
data = data.reshape(-1,1)
plt.set_cmap("gray")
#plt.imshow(data)
plt.imsave("caffe_layers/"+name+".jpg",data)
#plt.axis('off')
if __name__ == '__main__':
deploy_file = deploy_file_name
model_file = model_file_name
#如果是用了GPU
#caffe.set_mode_gpu()
#初始化caffe
net = caffe.Net(deploy_file, model_file, caffe.TEST)
#数据输入预处理
# 'data'对应于deploy文件:
# input: "data"
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
# python读取的图片文件格式为H×W×K,需转化为K×H×W
transformer.set_transpose('data', (2, 0, 1))
# python中将图片存储为[0, 1]
# 如果模型输入用的是0~255的原始格式,则需要做以下转换
#transformer.set_raw_scale('data', 255)
transformer.set_channel_swap('data', (2, 1, 0))
net.blobs['data'].reshape(1, 3, 300, 300)
img = caffe.io.load_image(test_img,color=True)
net.blobs['data'].data[...] = transformer.preprocess('data', img)
out = net.forward()
for layer_name, blob in net.blobs.iteritems():
print("{}\t{}".format(layer_name,str(blob.data.shape)))
layer_name = layer_name.replace('/','_')
feature = blob.data.reshape(blob.data.shape[1:])
show_data(feature, padsize=2, padval=0, name=layer_name)
需要先在运行目录下新建目录caffe_layers