我学到的算法

本文介绍了推荐系统的两种核心技术:协同过滤推荐技术和矩阵分解技术。详细解释了如何通过最近邻技术找到用户间的相似性,并利用矩阵分解预测用户对未评分项目的评分。此外还介绍了梯度下降法在优化预测过程中的应用。

一、协同过滤推荐技术

一般传统的协同过滤推荐技术都是采用最近邻技术:根据系统中用户对共同评分的商品项目的历史评分信息,从而找到他们之间的相似性,生成一个最近邻居用户集合,邻居集合里的邻居和当前用户兴趣爱好相似;再利用邻居集合里的用户的评分信息,推断当前用户对推荐的目标商品的喜好程度;最后根据预测的喜好程度做出是否向当前用户推荐该目标商

品项目的决策。

二、矩阵分解(Matrix Factorization,简写为 MF)技术

就是找一个近似矩阵ˆR ,使得原始矩阵 R 中的实际评分与ˆR 中的预测评分之间的距离平方和最小。(评分为用户为某一项目的打分)

三、梯度下降法

就是利用负梯度方向来决定每次迭代的新的搜索方向,使得每次迭代都能使待优化的目标函数逐步减小,最后能逼近目标函数的极值点。

转载于:https://www.cnblogs.com/zhaochunhua/p/4207059.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值