[luogu3941] 入阵曲

本文介绍一种高效算法,用于计算二维矩阵中满足特定条件的子矩阵数量。通过使用二维前缀和与模k运算,算法能在O(n^2m)时间复杂度内找出所有子矩阵,其元素和模k为零。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题面

​ 话说题目前面的那首诗还挺有意境的啊哈哈.

​ 可能今天要把中文的标点都换成英文的了, 先熟悉一下吧...

​ 好了, 进入正题, 求一个矩阵内有多少个子矩阵满足这个子矩阵的和模k为零.看到矩阵和啊, 第一感觉就是前缀和数组,在这里便是二维前缀和, 有这样一个算式:
\[ sum[i][j] = sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1] \]
​ 这个算式是怎样推出来的呢, 请大家自行画图解决, 应该是很好理解的.

​ 二维前缀和算出来了之后, 我们可以枚举x1, x2, y1, y2, 不妨令x1 <= x2, y1 <= y2, 则有这样一个算式, 矩阵和为:
\[ sum[x2][y2] - sum[x2][y1 - 1] - sum[x1 - 1][y2] + sum[x1 - 1][y1 - 1] \]
​ 这样的时间复杂度为:
\[ O(n ^ 2m^2) \]
​ 这肯定会爆, 考虑优化, 首先, 前缀和还是要留着的, 那我们需要怎么做呢, 思考5S...

​ 好了, 考虑压行, 我们知道两个模k同余的数相减模k必为0, 所以我们可以枚举子矩阵的上下两行或者左右两列, 在这里以上下两行为列, 从左往右枚举列, 将模k同余的数放进一个数组中保存, 每次新列加上与他同余的数的个数就是上下两行为枚举的i, j, 右边一列为枚举的k的子矩阵模k为零的个数, 好了, 具体实现在注释中会提到.

​ 现在的时间复杂度已经被优化到了:
\[ O(n ^ 2m) \]

代码实现

#include <iostream>
#include <cstdio>
using namespace std;

int n, m, K, mapp[405][405], cnt[1000005], b[405];
long long ans; //对于答案需要统计的问题, 开成longlong比较保险

inline int read()
{
    int x = 0, w = 1;
    char c = getchar();
    while(c < '0' || c > '9') { if (c == '-') w = -1; c = getchar(); }
    while(c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar(); }
    return x * w;
}

int main()
{
//  freopen("rally.in", "r", stdin);
//  freopen("rally.out", "w", stdout); 
    n = read(); m = read(); K = read();
    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= m; j++)
        {
            mapp[i][j] = read();
            (mapp[i][j] += mapp[i - 1][j] + mapp[i][j - 1] + K - mapp[i - 1][j - 1]) %= K; 
        }
    for(int i = 0; i < n; i++)
        for(int j = i + 1; j <= n; j++)
        {
            cnt[0] = 1;//模k为0的子矩阵初始有1个,  如果第k个矩阵本身模k就为零了,减去一个空的事实上不存在的矩阵不还是等于零吗, 因为有一个前缀和, 事实上是sum[r] - sum[l - 1]嘛, 不就相当于sum[-1] % k == 0
            for(int k = 1; k <= m; k++) ans += cnt[(b[k] = (mapp[j][k] - mapp[i][k] + K)) %= K]++; //b[k]统计的是第k列为右边界,第0列为左边界的子矩阵模k的值, 这样清零就只有O(m)了, 不然由于模数比较大, memset肯定会超时, 这里需要注意一下, 还有, 这个地方的写法比较玄学, 其实可以写成以下形式:
        /*
            for(int k = 1; k <= m; k++)
            {
                b[k] = (mapp[j][k] - mapp[i][k] + K) % K; 
                ans += cnt[b[k]]; 
                cnt[b[k]]++; 
            }
        */    
            for(int k = 1; k <= m; k++) cnt[b[k]] = 0; 
        }
    printf("%lld\n", ans); 
    return 0;
}

转载于:https://www.cnblogs.com/ztlztl/p/10434169.html

内容概要:本文详细介绍了扫描单分子定位显微镜(scanSMLM)技术及其在三维超分辨体积成像中的应用。scanSMLM通过电调透镜(ETL)实现快速轴向扫描,结合4f检测系统将不同焦平面的荧光信号聚焦到固定成像面,从而实现快速、大视场的三维超分辨成像。文章不仅涵盖了系统硬件的设计与实现,还提供了详细的软件代码实现,包括ETL控制、3D样本模拟、体积扫描、单分子定位、3D重建和分子聚类分析等功能。此外,文章还比较了循环扫描与常规扫描模式,展示了前者在光漂白效应上的优势,并通过荧光珠校准、肌动蛋白丝、线粒体网络和流感A病毒血凝素(HA)蛋白聚类的三维成像实验,验证了系统的性能和应用潜力。最后,文章深探讨了HA蛋白聚类与病毒感染的关系,模拟了24小时内HA聚类的动态变化,提供了从分子到细胞尺度的多尺度分析能力。 适合人群:具备生物学、物理学或工程学背景,对超分辨显微成像技术感兴趣的科研人员,尤其是从事细胞生物学、病毒学或光学成像研究的科学家和技术人员。 使用场景及目标:①理解和掌握scanSMLM技术的工作原理及其在三维超分辨成像中的应用;②学习如何通过Python代码实现完整的scanSMLM系统,包括硬件控制、图像采集、3D重建和数据分析;③应用于单分子水平研究细胞内结构和动态过程,如病毒侵机制、蛋白质聚类等。 其他说明:本文提供的代码不仅实现了scanSMLM系统的完整工作流程,还涵盖了多种超分辨成像技术的模拟和比较,如STED、GSDIM等。此外,文章还强调了系统在硬件改动小、成像速度快等方面的优势,为研究人员提供了从理论到实践的全面指导。
内容概要:本文详细介绍了基于Seggiani提出的渣层计算模型,针对Prenflo气流床气化炉中炉渣的积累和流动进行了模拟。模型不仅集成了三维代码以提供气化炉内部的温度和浓度分布,还探讨了操作条件变化对炉渣行为的影响。文章通过Python代码实现了模型的核心功能,包括炉渣粘度模型、流动速率计算、厚度更新、与三维模型的集成以及可视化展示。此外,还扩展了模型以考虑炉渣组成对特性的影响,并引了Bingham流体模型,更精确地描述了含未溶解颗粒的熔渣流动。最后,通过实例展示了氧气-蒸汽流量增加2%时的动态响应,分析了温度、流动特性和渣层分布的变化。 适合人群:从事煤气化技术研究的专业人士、化工过程模拟工程师、以及对工业气化炉操作优化感兴趣的科研人员。 使用场景及目标:①评估不同操作条件下气化炉内炉渣的行为变化;②预测并优化气化炉的操作参数(如温度、氧煤比等),以防止炉渣堵塞;③为工业气化炉的设计和操作提供理论支持和技术指导。 其他说明:该模型的实现基于理论公式和经验数据,为确保模型准确性,实际应用中需要根据具体气化炉的数据进行参数校准。模型还考虑了多个物理场的耦合,包括质量、动量和能量守恒方程,能够模拟不同操作条件下的渣层演变。此外,提供了稳态求解器和动态模拟工具,可用于扰动测试和工业应用案例分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值