poj 2533 (LIS 最长递增子序列)

本文介绍了一种采用O(nlogn)复杂度的算法来解决寻找给定序列中最长有序子序列的问题。通过维护一个单调递增数组g来记录当前有序子序列的最小值,并利用二分查找优化搜索过程,最终输出最长有序子序列的长度。

采用的是 O(nlogn) 的算法。

算法的关键是: 用一个数组g[i] 记录当前有i个元素的递增子序列的最后一个元素的最小值,因为g是单调的,所以可以用二分.

Longest Ordered Subsequence
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 25957 Accepted: 11274

Description

A numeric sequence of   ai  is ordered if   a1  <   a2  < ... <   aN. Let the subsequence of the given numeric sequence ( a1,   a2, ...,   aN) be any sequence ( ai1,   ai2, ...,   aiK), where 1 <=   i1  <   i2  < ... <   iK  <=   N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

Input

The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

Output

Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

Sample Input

7
1 7 3 5 9 4 8

Sample Output

4

Source

Northeastern Europe 2002, Far-Eastern Subregion

 

#include <stdio.h>
#include <string.h>
#include <iostream>
using namespace std;
#define N 1010

int g[N];

int main()
{
    int n;
    scanf("%d",&n);
    int cnt=0;
    memset(g,-1,sizeof(g));
    int k=0;
    for(int i=1;i<=n;i++)
    {
        int tmp;
        scanf("%d",&tmp);
        int b=0,d=k;
        while(b<d)
        {
            int mid=(b+d+1)/2;
            if(tmp > g[mid])
            {
                b = mid;
            }
            else
            {
                d = mid-1;
            }
        }
        if(g[b+1]==-1) g[b+1]=tmp;
        else g[b+1]=min(g[b+1],tmp);
        if(b+1>k) k=b+1;
    }
    printf("%d\n",k);
    return 0;
}

 

转载于:https://www.cnblogs.com/chenhuan001/archive/2013/03/24/2979760.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值