codeforces 719E E. Sasha and Array(线段树)

本文介绍了一个关于数组操作的问题,包含两种操作:一是增加指定区间内所有整数的值;二是查询区间内整数之和对应的斐波那契数列值。通过线段树维护矩阵来高效解决此问题。

题目链接:

E. Sasha and Array

time limit per test
5 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Sasha has an array of integers a1, a2, ..., an. You have to perform m queries. There might be queries of two types:

  1. 1 l r x — increase all integers on the segment from l to r by values x;
  2. 2 l r — find , where f(x) is the x-th Fibonacci number. As this number may be large, you only have to find it modulo109 + 7.

In this problem we define Fibonacci numbers as follows: f(1) = 1, f(2) = 1, f(x) = f(x - 1) + f(x - 2) for all x > 2.

Sasha is a very talented boy and he managed to perform all queries in five seconds. Will you be able to write the program that performs as well as Sasha?

Input

The first line of the input contains two integers n and m (1 ≤ n ≤ 100 000, 1 ≤ m ≤ 100 000) — the number of elements in the array and the number of queries respectively.

The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109).

Then follow m lines with queries descriptions. Each of them contains integers tpiliri and may be xi (1 ≤ tpi ≤ 2, 1 ≤ li ≤ ri ≤ n,1 ≤ xi ≤ 109). Here tpi = 1 corresponds to the queries of the first type and tpi corresponds to the queries of the second type.

It's guaranteed that the input will contains at least one query of the second type.

Output

For each query of the second type print the answer modulo 109 + 7.

Examples
input
5 4
1 1 2 1 1
2 1 5
1 2 4 2
2 2 4
2 1 5
output
5
7
9

题意:

两个操作,1是把这个区间里的数都加x,2是求这个区间的和函数和,函数是斐波那契数列;

思路:

显然是一个线段树的题,不过维护的是矩阵,具体的可以看题解,写的太挫,跑了2000+ms;

AC代码:
#include <bits/stdc++.h>
#define lson o<<1
#define rson o<<1|1
using namespace std;
typedef long long LL;
const int maxn=1e5+10;
const LL mod=1e9+7;
LL a[maxn];
struct matrix
{
    LL a[2][2];
};
matrix add(matrix A,matrix B)
{
    matrix C;
    for(int i=0;i<2;i++)
    {
        for(int j=0;j<2;j++)
        {
            C.a[i][j]=A.a[i][j]+B.a[i][j];
            if(C.a[i][j]>=mod)C.a[i][j]-=mod;
        }
    }
    return C;
}
matrix mul(matrix A,matrix B)
{
    matrix C;
    for(int i=0;i<2;i++)
    {
        for(int j=0;j<2;j++)
        {
            C.a[i][j]=0;
            for(int k=0;k<2;k++)
            {
                C.a[i][j]+=A.a[i][k]*B.a[k][j];
                C.a[i][j]%=mod;
            }
        }
    }
    return C;
}
matrix pow_mod(LL x)
{
    matrix s,base;
    s.a[0][0]=s.a[1][1]=1;s.a[0][1]=s.a[1][0]=0;
    base.a[0][0]=base.a[0][1]=base.a[1][0]=1;base.a[1][1]=0;
    while(x)
    {
        if(x&1)s=mul(s,base);
        base=mul(base,base);
        x>>=1;
    }
    return s;
}

struct Tree
{
    int l,r,mark;
    matrix sum,fs;
}tr[4*maxn];

inline void pushup(int o)
{
    tr[o].sum=add(tr[lson].sum,tr[rson].sum);
}
inline void pushdown(int o)
{
    if(tr[o].mark)
    {
        tr[o].mark=0;tr[lson].mark=1;tr[rson].mark=1;
        tr[lson].sum=mul(tr[lson].sum,tr[o].fs);tr[rson].sum=mul(tr[rson].sum,tr[o].fs);
        tr[lson].fs=mul(tr[lson].fs,tr[o].fs);tr[rson].fs=mul(tr[rson].fs,tr[o].fs);
        tr[o].fs.a[0][0]=tr[o].fs.a[1][1]=1;tr[o].fs.a[1][0]=tr[o].fs.a[0][1]=0;
    }
}
void build(int o,int L ,int R)
{
    tr[o].l=L;tr[o].r=R;tr[o].mark=0;
    tr[o].fs.a[0][0]=tr[o].fs.a[1][1]=1;tr[o].fs.a[0][1]=tr[o].fs.a[1][0]=0;
    if(L>=R)
    {
        tr[o].sum=pow_mod(a[L]);
        return ;
    }
    int mid=(L+R)>>1;
    build(lson,L,mid);
    build(rson,mid+1,R);
    pushup(o);
}

LL query(int o,int L,int R)
{
    //cout<<o<<" "<<L<<" "<<R<<endl;
    if(L<=tr[o].l&&R>=tr[o].r)return tr[o].sum.a[0][0];
    int mid=(tr[o].l+tr[o].r)>>1;
    pushdown(o);
    LL ans=0;
    if(L<=mid)ans+=query(lson,L,R);
    if(R>mid)ans+=query(rson,L,R);
    pushup(o);
    return ans%mod;
}

void update(int o,int L,int R,matrix num)
{
    if(L<=tr[o].l&&R>=tr[o].r)
    {
        tr[o].fs=mul(tr[o].fs,num);
        tr[o].mark=1;
        tr[o].sum=mul(tr[o].sum,num);
        return ;
    }
    pushdown(o);
    int mid=(tr[o].l+tr[o].r)>>1;
    if(L<=mid)update(lson,L,R,num);
    if(R>mid)update(rson,L,R,num);
    pushup(o);
}
int n,m;
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)scanf("%I64d",&a[i]),a[i]--;
    build(1,1,n);
    int op,u,v;
    LL temp;
    while(m--)
    {
        scanf("%d",&op);
        if(op==1)
        {
            scanf("%d%d%I64d",&u,&v,&temp);
            matrix num=pow_mod(temp);
            update(1,u,v,num);
        }
        else 
        {
            scanf("%d%d",&u,&v);
            printf("%I64d\n",query(1,u,v));
        }
    }
    return 0;
}

  

转载于:https://www.cnblogs.com/zhangchengc919/p/5911293.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值