[ZJU 1010] Area

本文介绍了一种计算由随机线条形成的不规则多边形面积的方法,通过暴力判断线段是否相交,并使用微积分思想求解。讨论了输入坐标点形成多边形的条件及面积计算的实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ZOJ Problem Set - 1010
Area

Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge

Jerry, a middle school student, addicts himself to mathematical research. Maybe the problems he has thought are really too easy to an expert. But as an amateur, especially as a 15-year-old boy, he had done very well. He is so rolling in thinking the mathematical problem that he is easily to try to solve every problem he met in a mathematical way. One day, he found a piece of paper on the desk. His younger sister, Mary, a four-year-old girl, had drawn some lines. But those lines formed a special kind of concave polygon by accident as Fig. 1 shows.


Fig. 1 The lines his sister had drawn

"Great!" he thought, "The polygon seems so regular. I had just learned how to calculate the area of triangle, rectangle and circle. I'm sure I can find out how to calculate the area of this figure." And so he did. First of all, he marked the vertexes in the polygon with their coordinates as Fig. 2 shows. And then he found the result--0.75 effortless.


Fig.2 The polygon with the coordinates of vertexes

Of course, he was not satisfied with the solution of such an easy problem. "Mmm, if there's a random polygon on the paper, then how can I calculate the area?" he asked himself. Till then, he hadn't found out the general rules on calculating the area of a random polygon. He clearly knew that the answer to this question is out of his competence. So he asked you, an erudite expert, to offer him help. The kind behavior would be highly appreciated by him.


Input

The input data consists of several figures. The first line of the input for each figure contains a single integer n, the number of vertexes in the figure. (0 <= n <= 1000).

In the following n lines, each contain a pair of real numbers, which describes the coordinates of the vertexes, (xi, yi). The figure in each test case starts from the first vertex to the second one, then from the second to the third, ���� and so on. At last, it closes from the nth vertex to the first one.

The input ends with an empty figure (n = 0). And this figure not be processed.


Output

As shown below, the output of each figure should contain the figure number and a colon followed by the area of the figure or the string "Impossible".

If the figure is a polygon, compute its area (accurate to two fractional digits). According to the input vertexes, if they cannot form a polygon (that is, one line intersects with another which shouldn't be adjoined with it, for example, in a figure with four lines, the first line intersects with the third one), just display "Impossible", indicating the figure can't be a polygon. If the amount of the vertexes is not enough to form a closed polygon, the output message should be "Impossible" either.

Print a blank line between each test cases.


Sample Input

5
0 0
0 1
0.5 0.5
1 1
1 0
4
0 0
0 1
1 0
1 1
0


Output for the Sample Input

Figure 1: 0.75

Figure 2: Impossible


Source: Asia 2001, Shanghai (Mainland China)

solution:
  每次读入后暴力判断两线是否相交。后用微积分思想解决。
  注意在n<3时输出Impossible。
#include<bits/stdc++.h>
using namespace std;
typedef struct point  
{  
    double x;  
    double y;  
}Point;  
bool lineIntersectSide(Point A, Point B, Point C, Point D)  
{
    double fC = (C.y - A.y) * (A.x - B.x) - (C.x - A.x) * (A.y - B.y);  
    double fD = (D.y - A.y) * (A.x - B.x) - (D.x - A.x) * (A.y - B.y);  
  
    if(fC * fD > 0)  
        return false;  
  
    return true;  
}  
bool sideIntersectSide(Point A, Point B, Point C, Point D)  
{  
    if(!lineIntersectSide(A, B, C, D))  
        return false;  
    if(!lineIntersectSide(C, D, A, B))  
        return false;  
    return true;
}
Point a[2000];
int n;
int ID;
double CALC(Point a,Point b)
{
    return (a.x + b.x) * (b.y - a.y) / 2;
}
void solve()
{
    cout << "Figure " << ID << ": ";
    for (int i=1;i<=n;i++)
        cin >> a[i].x >> a[i].y;
    if (n <= 2)
    {
        cout << "Impossible\n\n";
        return;
    }
    for (int i=1;i<=n;i++)
        for (int j=1;j<=n;j++)
        {
            if (i == j  || i%n+1 == j || i == j%n+1 || i%n+1 == j%n+1) continue;
            if (sideIntersectSide(a[i],a[i%n+1],a[j],a[j%n+1]))
            {
                cout << "Impossible\n\n";
                return;
            }
        }
    double ANS=0;
    for (int i=1;i<=n;i++)
        ANS += CALC(a[i],a[i%n+1]);
    printf("%.2f\n\n",abs(ANS));
}
int main()
{
    while (cin >> n,n)
        ID++,solve();
}

 

转载于:https://www.cnblogs.com/dgklr/p/9712765.html

资源下载链接为: https://pan.quark.cn/s/1bfadf00ae14 “STC单片机电压测量”是一个以STC系列单片机为基础的电压检测应用案例,它涵盖了硬件电路设计、软件编程以及数据处理等核心知识点。STC单片机凭借其低功耗、高性价比和丰富的I/O接口,在电子工程领域得到了广泛应用。 STC是Specialized Technology Corporation的缩写,该公司的单片机基于8051内核,具备内部振荡器、高速运算能力、ISP(在系统编程)和IAP(在应用编程)功能,非常适合用于各种嵌入式控制系统。 在源代码方面,“浅雪”风格的代码通常简洁易懂,非常适合初学者学习。其中,“main.c”文件是程序的入口,包含了电压测量的核心逻辑;“STARTUP.A51”是启动代码,负责初始化单片机的硬件环境;“电压测量_uvopt.bak”和“电压测量_uvproj.bak”可能是Keil编译器的配置文件备份,用于设置编译选项和项目配置。 对于3S锂电池电压测量,3S锂电池由三节锂离子电池串联而成,标称电压为11.1V。测量时需要考虑电池的串联特性,通过分压电路将高电压转换为单片机可接受的范围,并实时监控,防止过充或过放,以确保电池的安全和寿命。 在电压测量电路设计中,“电压测量.lnp”文件可能包含电路布局信息,而“.hex”文件是编译后的机器码,用于烧录到单片机中。电路中通常会使用ADC(模拟数字转换器)将模拟电压信号转换为数字信号供单片机处理。 在软件编程方面,“StringData.h”文件可能包含程序中使用的字符串常量和数据结构定义。处理电压数据时,可能涉及浮点数运算,需要了解STC单片机对浮点数的支持情况,以及如何高效地存储和显示电压值。 用户界面方面,“电压测量.uvgui.kidd”可能是用户界面的配置文件,用于显示测量结果。在嵌入式系统中,用
资源下载链接为: https://pan.quark.cn/s/abbae039bf2a 在 Android 开发中,Fragment 是界面的一个模块化组件,可用于在 Activity 中灵活地添加、删除或替换。将 ListView 集成到 Fragment 中,能够实现数据的动态加载与列表形式展示,对于构建复杂且交互丰富的界面非常有帮助。本文将详细介绍如何在 Fragment 中使用 ListView。 首先,需要在 Fragment 的布局文件中添加 ListView 的 XML 定义。一个基本的 ListView 元素代码如下: 接着,创建适配器来填充 ListView 的数据。通常会使用 BaseAdapter 的子类,如 ArrayAdapter 或自定义适配器。例如,创建一个简单的 MyListAdapter,继承自 ArrayAdapter,并在构造函数中传入数据集: 在 Fragment 的 onCreateView 或 onActivityCreated 方法中,实例化 ListView 和适配器,并将适配器设置到 ListView 上: 为了提升用户体验,可以为 ListView 设置点击事件监听器: 性能优化也是关键。设置 ListView 的 android:cacheColorHint 属性可提升滚动流畅度。在 getView 方法中复用 convertView,可减少视图创建,提升性能。对于复杂需求,如异步加载数据,可使用 LoaderManager 和 CursorLoader,这能更好地管理数据加载,避免内存泄漏,支持数据变更时自动刷新。 总结来说,Fragment 中的 ListView 使用涉及布局设计、适配器创建与定制、数据绑定及事件监听。掌握这些步骤,可构建功能强大的应用。实际开发中,还需优化 ListView 性能,确保应用流畅运
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值