hdoj--3488--Tour(KM)

本文介绍了一个旅行路线优化问题,目标是最小化包含至少两个城市的环路总距离,并确保每个城市仅被访问一次(除起点终点外)。通过使用匈牙利算法(KM算法),解决了这一复杂的图论问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Tour

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 2549    Accepted Submission(s): 1257


Problem Description
In the kingdom of Henryy, there are N (2 <= N <= 200) cities, with M (M <= 30000) one-way roads connecting them. You are lucky enough to have a chance to have a tour in the kingdom. The route should be designed as: The route should contain one or more loops. (A loop is a route like: A->B->……->P->A.)
Every city should be just in one route.
A loop should have at least two cities. In one route, each city should be visited just once. (The only exception is that the first and the last city should be the same and this city is visited twice.)
The total distance the N roads you have chosen should be minimized.
 

Input
An integer T in the first line indicates the number of the test cases.
In each test case, the first line contains two integers N and M, indicating the number of the cities and the one-way roads. Then M lines followed, each line has three integers U, V and W (0 < W <= 10000), indicating that there is a road from U to V, with the distance of W.
It is guaranteed that at least one valid arrangement of the tour is existed.
A blank line is followed after each test case.
 

Output
For each test case, output a line with exactly one integer, which is the minimum total distance.
 

Sample Input

  
1 6 9 1 2 5 2 3 5 3 1 10 3 4 12 4 1 8 4 6 11 5 4 7 5 6 9 6 5 4
 

Sample Output

  
42
 

Source
 

Recommend
zhouzeyong   |   We have carefully selected several similar problems for you:   3435  1853  3395  3491  3657 

#include<cstdio>
#include<cstring>
#include<algorithm>
#define INF 0x3f3f3f3f
using namespace std;
int n,m;
int map[210][210];
int slock[210];
int lx[210],ly[210];
bool visx[210],visy[210];
int nx,ny,match[210];
void getmap()
{
	scanf("%d%d",&n,&m);
	nx=ny=n;
	for(int i=1;i<=nx;i++)
	for(int j=1;j<=ny;j++)
	map[i][j]=-INF;
	int x,y,w;
	for(int i=0;i<m;i++)
	{
		scanf("%d%d%d",&x,&y,&w);
		if(-w>map[x][y])
			map[x][y]=-w;
	}
}
int DFS(int x)
{
	visx[x]=true;
	for(int y=1;y<=ny;y++)
	{
		if(visy[y]) continue;
		int t=lx[x]+ly[y]-map[x][y];
		if(t==0)
		{
			visy[y]=true;
			if(match[y]==-1||DFS(match[y]))
			{
				match[y]=x;
				return 1;
			}
		}
		else if(t<slock[y])
		slock[y]=t;
	}
	return 0;
}
void KM()
{
	memset(match,-1,sizeof(match));
	memset(ly,0,sizeof(ly));
	for(int x=1;x<=nx;x++)
	{
		lx[x]=-INF;
		for(int y=1;y<=ny;y++)
		lx[x]=max(lx[x],map[x][y]);
	}
	for(int x=1;x<=nx;x++)
	{
		for(int y=1;y<=ny;y++)
		slock[y]=INF;
		while(1)
		{
			memset(visx,false,sizeof(visx));
			memset(visy,false,sizeof(visy));
			if(DFS(x)) break;
			int d=INF;
			for(int i=1;i<=ny;i++)
			{
				if(!visy[i]&&slock[i]<d)
					d=slock[i];
			}
			for(int i=1;i<=nx;i++)
			{
				if(visx[i])
				lx[i]-=d;
			}
			for(int i=1;i<=ny;i++)
			{
				if(visy[i])
					ly[i]+=d;
				else
					slock[i]-=d;
			}
		}
	}
	int ans = 0;
	for(int i = 1;i <= ny; i++)
	ans += map[match[i]][i];
	printf("%d\n",-ans); 
}
int main()
{
	int t;
	scanf("%d",&t);
	while(t--)
	{
		getmap();
		KM();
	}
	return 0;
}


转载于:https://www.cnblogs.com/playboy307/p/5273477.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值