矩阵分解(matrix factorization)

本文介绍了矩阵分解的基本概念,详细解释了如何通过寻找一组基向量及其对应的系数矩阵来实现原始高维数据集的有效压缩与降维。矩阵分解的目标是最小化重构误差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 基本概念

针对高维空间中的数据集,矩阵分解通过寻找到一组基及每一个数据点在该基向量下的表示,可对原始高维空间中的数据集进行压缩表示。

X=[x1,,xm]Rm×n 为数据矩阵,矩阵分解的数学含义即为,找到如下的两个矩阵(URm×k,ARk×n),其矩阵乘法可实现对原始数据集的最优逼近:

XUA

  • URm×kU 中的每一列(共 k列)可视为对该高维数据集空间中的基向量;
  • ARk×nA 中的每一列(共 n 列)可视为每一个样本在基向量下的线性表示(k 维表示);

从这一角度来看,矩阵分解可视为 mk 的降维算法。

矩阵分解可进一步定义为如下的优化问题:

minU,AXUA2F

转载于:https://www.cnblogs.com/mtcnn/p/9421847.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值