DP习题笔记

本文解析了两个经典的动态规划问题:寻找构成整数n所需的最少完全平方数数量及求解给定序列中最长递增子序列的问题。通过具体代码示例展示了如何使用动态规划方法高效解决这两类问题。

Q1:Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...) which sum to n.

class Solution {
public:
    int numSquares(int n) {
        if (n == 0) return 0;
        
        vector<int> dp(n+1, 0);
        
        for (int i=0; i<=n; ++i) {
            dp[i] = i;
            for (int j = 2; j<=sqrt(i); ++j) {
                dp[i] = min(dp[i], 1 + dp[i - j*j]);
            }
        }
        
        return dp[n];
    }
};

 Q2:A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1a2, ..., aN) be any sequence (ai1ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK<= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

一道求最长上升子序列的DP题,主要思想是找出转移方程dp[i]=max(dp[j]+1) (j<i且a[j]<a[i])

#include <iostream>
#include <vector>
using namespace std;
int main(int argc, char **argv)
{
    vector<int> a = { 1,2,3,5,9,4,8,10,14,2,5,2 };
    vector<int> dp(a.size(),0);
    dp[0] = 1;
    int ml = 1;
    for (int i = 1; i < a.size(); ++i) {
        for (int j = 0; j < i; ++j) {
            if (a[j] <= a[i])
                dp[i] = max(dp[j] + 1, dp[i]);
        }
        ml = max(ml, dp[i]);
    }
    cout << ml;
    return 0;
}

 

转载于:https://www.cnblogs.com/lightmonster/p/10657216.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值