hdu 4465 Candy(概率公式+极大乘极小,4级)

这篇文章探讨了一个关于概率和期望值的数学问题,通过一个关于孩子选择糖果盒并吃糖果的情境,来解释如何计算剩余糖果的数量。利用概率论的知识,解决实际问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Candy

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1016    Accepted Submission(s): 449
Special Judge


Problem Description
LazyChild is a lazy child who likes candy very much. Despite being very young, he has two large candy boxes, each contains n candies initially. Everyday he chooses one box and open it. He chooses the first box with probability p and the second box with probability (1 - p). For the chosen box, if there are still candies in it, he eats one of them; otherwise, he will be sad and then open the other box.
He has been eating one candy a day for several days. But one day, when opening a box, he finds no candy left. Before opening the other box, he wants to know the expected number of candies left in the other box. Can you help him?
 

Input
There are several test cases.
For each test case, there is a single line containing an integer n (1 ≤ n ≤ 2 × 10 5) and a real number p (0 ≤ p ≤ 1, with 6 digits after the decimal).
Input is terminated by EOF.
 

Output
For each test case, output one line “Case X: Y” where X is the test case number (starting from 1) and Y is a real number indicating the desired answer.
Any answer with an absolute error less than or equal to 10 -4 would be accepted.
 

Sample Input

  
10 0.400000 100 0.500000 124 0.432650 325 0.325100 532 0.487520 2276 0.720000
 

Sample Output

  
Case 1: 3.528175 Case 2: 10.326044 Case 3: 28.861945 Case 4: 167.965476 Case 5: 32.601816 Case 6: 1390.500000
 

Source
 

Recommend
liuyiding
 

思路:

          而前面都可以递推,只有p^(n+1)是常数需要算,但这是一个极小值,而另一坨是个极大值,相乘是个中间值在double内,所以就可以极大极小一点点乘控制在double 范围内就行了,记录乘的个数,不够的补上就好了。


#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
const double nan = 1e-6;
const double inf = 1e6;
const int mm=2e5+9;
double ppp[mm];
int num[mm];
double cal(double p,int n)
{
    double ans = 0, c = 1.0;
    double q = 1.0 - p;
    ppp[0]=1;
    for(int i=1;i<=n+2;++i)
      ppp[i]=ppp[i-1]*p;
    int i;
    int cnt = 0;
    num[0]=0;
    for(i=1; i<=n; i++)
    {
        c *= (double(n+i)/double(i) * q);
       num[i]=num[i-1];
       if(c>inf)
       {
         while(num[i]<=n&&c>nan)
         { num[i]++;
           c*=p;
         }
       }
       ans+=(n-i)*c*ppp[ n+1-num[i] ];
       // ans += (n-i)*c;
    }
    ans += n*ppp[n+1];
//    for(i=0; i<=n; i++)
//        ans *= p;
    return ans;
}
int main()
{
    int n,ca = 0;
    double p;
    while(scanf("%d",&n)!=EOF)
    {
        scanf("%lf",&p);
        double ans = 0;
        ans += cal(p,n);
        ans += cal(1-p,n);
        printf("Case %d: %.6lf\n",++ca,ans);
       // cout<<ans<<endl;
    }
    return 0;
}




转载于:https://www.cnblogs.com/nealgavin/p/3797554.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值