POJ 3384 Feng Shui [半平面交]

本文介绍了一个基于几何计算的算法,该算法旨在解决如何在有限的空间内通过放置圆形地毯来最大化覆盖面积的问题。此问题源于风水实践,需要找到两个圆形地毯的最佳放置位置,以确保房间内的地面尽可能多地被覆盖。
Feng Shui
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 5537 Accepted: 1663 Special Judge

Description

Feng shui is the ancient Chinese practice of placement and arrangement of space to achieve harmony with the environment. George has recently got interested in it, and now wants to apply it to his home and bring harmony to it.

There is a practice which says that bare floor is bad for living area since spiritual energy drains through it, so George purchased two similar round-shaped carpets (feng shui says that straight lines and sharp corners must be avoided). Unfortunately, he is unable to cover the floor entirely since the room has shape of a convex polygon. But he still wants to minimize the uncovered area by selecting the best placing for his carpets, and asks you to help.

You need to place two carpets in the room so that the total area covered by both carpets is maximal possible. The carpets may overlap, but they may not be cut or folded (including cutting or folding along the floor border) — feng shui tells to avoid straight lines.

Input

The first line of the input file contains two integer numbers n and r — the number of corners in George’s room (3 ≤ n ≤ 100) and the radius of the carpets (1 ≤ r ≤ 1000, both carpets have the same radius). The following nlines contain two integers xi and yi each — coordinates of the i-th corner (−1000 ≤ xiyi ≤ 1000). Coordinates of all corners are different, and adjacent walls of the room are not collinear. The corners are listed in clockwise order.

Output

Write four numbers x1y1x2y2 to the output file, where (x1y1) and (x2y2) denote the spots where carpet centers should be placed. Coordinates must be precise up to 4 digits after the decimal point.

If there are multiple optimal placements available, return any of them. The input data guarantees that at least one solution exists.

 


 

题意:

在一个有 n 个点的凸包形状房间中,要放两个半径为 r 的圆形地毯,要求这两个地毯覆

盖地板的面积越大越好,求两个地毯圆心的位置。


先把凸包缩小r,就变成找圆心了,当然是最远点了,直接枚举点对就好了

变成逆时针直接reverse一下就好了
 
然而本题太恶心了.....不说了自己看discuss
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std;
typedef long long ll;
const int N=205;
const double INF=1e3+5;
const double eps=1e-10;
inline int read(){
    char c=getchar();int x=0,f=1;
    while(c<'0'||c>'9'){if(c=='-')f=-1; c=getchar();}
    while(c>='0'&&c<='9'){x=x*10+c-'0'; c=getchar();}
    return x*f;
}

inline int sgn(double x){
    if(abs(x)<eps) return 0;
    else return x<0?-1:1;
}

struct Vector{
    double x,y;
    Vector(double a=0,double b=0):x(a),y(b){}
    bool operator <(const Vector &a)const{
        return sgn(x-a.x)<0||(sgn(x-a.x)==0&&sgn(y-a.y)<0);
    }
    void print(){printf("%lf %lf\n",x,y);}
};
typedef Vector Point;
Vector operator +(Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);}
Vector operator -(Vector a,Vector b){return Vector(a.x-b.x,a.y-b.y);}
Vector operator *(Vector a,double b){return Vector(a.x*b,a.y*b);}
Vector operator /(Vector a,double b){return Vector(a.x/b,a.y/b);}
bool operator ==(Vector a,Vector b){return sgn(a.x-b.x)==0&&sgn(a.y-b.y)==0;}
double Dot(Vector a,Vector b){return a.x*b.x+a.y*b.y;}
double Cross(Vector a,Vector b){return a.x*b.y-a.y*b.x;}
double Len(Vector a){return sqrt(Dot(a,a));}
Vector Normal(Vector a){
    return Vector(-a.y,a.x);//counterClockwise
}
struct Line{
    Point s,t;
    Line(){}
    Line(Point a,Point b):s(a),t(b){}
};
bool isLSI(Line l1,Line l2){
    Vector v=l1.t-l1.s,u=l2.s-l1.s,w=l2.t-l1.s;
    return sgn(Cross(v,u))!=sgn(Cross(v,w));
}
Point LI(Line a,Line b){
    Vector v=a.s-b.s,v1=a.t-a.s,v2=b.t-b.s;
    double t=Cross(v2,v)/Cross(v1,v2);
    return a.s+v1*t;
}

void iniPolygon(Point p[],int &n,double inf){
    n=0;
    p[++n]=Point(-inf,-inf);
    p[++n]=Point(inf,-inf);
    p[++n]=Point(inf,inf);
    p[++n]=Point(-inf,inf);
}
Point t[N];int tn;
void CutPolygon(Point p[],int &n,Point a,Point b){//get the left of a->b
    tn=0;
    Point c,d;
    for(int i=1;i<=n;i++){
        c=p[i],d=p[i%n+1];
        if(sgn(Cross(b-a,c-a))>=0) t[++tn]=c;
        if(isLSI(Line(a,b),Line(c,d)))
            t[++tn]=LI(Line(a,b),Line(c,d));
    }
    n=tn;for(int i=1;i<=n;i++) p[i]=t[i];
}

int n,r,m;
Point p[N],q[N];
Line L[N];
void ChangePolygon(Point p[],int n,double x){
    p[n+1]=p[1];
    for(int i=1;i<=n;i++){
        Vector v=Normal(p[i+1]-p[i])*x/Len(p[i+1]-p[i]);
        L[i]=Line(p[i]+v,p[i+1]+v);
    }
}

int main(int argc, const char * argv[]){
    while(scanf("%d%d",&n,&r)!=EOF){
        for(int i=1;i<=n;i++) scanf("%lf%lf",&p[i].x,&p[i].y);
        iniPolygon(q,m,INF);
        reverse(p+1,p+1+n);
        ChangePolygon(p,n,r);
        Point a,b;double mx=0;
        for(int i=1;i<=n;i++) CutPolygon(q,m,L[i].s,L[i].t);
        for(int i=1;i<=m;i++)
            for(int j=1;j<=m;j++) if(sgn(Len(q[j]-q[i])-mx)>=0){
                mx=Len(q[j]-q[i]);
                a=q[i];b=q[j];
            }
        if(a.x>b.x) swap(a,b);
        printf("%.4f %.4f %.4f %.4f\n",a.x,a.y,b.x,b.y);
    }
}

 

 

转载于:https://www.cnblogs.com/candy99/p/6358995.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值