Description
Consider the number triangle shown below. Write a program that calculates the highest sum
of numbers that can be passed on a route that starts at the top and ends somewhere on
the base. Each step can go either diagonally down to the left or diagonally down to the right.
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
In the sample above, the route from 7 to 3 to 8 to 7 to 5 produces the highest sum: 30.
Input
The first line contains R (1 <= R <= 1000), the number of rows. Each subsequent line contains the
integers for that particular row of the triangle. All the supplied integers are non-negative and
no larger than 100.
OutputA single line containing the largest sum using the traversal specified.
Sample Input
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
Sample Output
30
这个是一道十分简单的题目,就是用动规去做,
下面有详细的解释。
#include "iostream"
using namespace std;
#define Max 1005
int a[Max][Max];
int R;
int Find()
{
for(int i=R-1;i>0;i--)
{
for(int j=1;j<=i;j++)
{
a[i][j] += max(a[i+1][j],a[i+1][j+1]); //从倒数第二层开始运算,将下一层的较大数往上加,
//当加到第一层的时候,自然的就是最大值了
}
}
return a[1][1];
}
int main()
{
while(cin>>R)
{
for(int i=1; i<=R; i++)
for(int j=1; j<=i; j++)
cin>>a[i][j];
cout<<Find()<<endl;
}
}