Wunder Fund Round 2016 (Div. 1 + Div. 2 combined) C. Constellation

本文介绍了一种解决特定几何问题的方法,通过排序和检查点的相对位置,找到三个星点形成满足特定条件的三角形,确保所有其他点严格位于该三角形外。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
Cat Noku has obtained a map of the night sky. On this map, he found a constellation with n stars numbered from 1 to n. For each i, the i-th star is located at coordinates (xi, yi). No two stars are located at the same position.
In the evening Noku is going to take a look at the night sky. He would like to find three distinct stars and form a triangle. The triangle must have positive area. In addition, all other stars must lie strictly outside of this triangle. He is having trouble finding the answer and would like your help. Your job is to find the indices of three stars that would form a triangle that satisfies all the conditions.
It is guaranteed that there is no line such that all stars lie on that line. It can be proven that if the previous condition is satisfied, there exists a solution to this problem.
Input
The first line of the input contains a single integer n (3 ≤ n ≤ 100 000).
Each of the next n lines contains two integers xi and yi ( - 109 ≤ xi, yi ≤ 109).
It is guaranteed that no two stars lie at the same point, and there does not exist a line such that all stars lie on that line.
Output
Print three distinct integers on a single line — the indices of the three points that form a triangle that satisfies the conditions stated in the problem.
If there are multiple possible answers, you may print any of them.
Examples
Input
Copy
3
0 1
1 0
1 1
Output
Copy
1 2 3
Input
Copy
5
0 0
0 2
2 0
2 2
1 1
Output
Copy
1 3 5
Note
In the first sample, we can print the three indices in any order.
In the second sample, we have the following picture.
1598921-20190222185532982-1521958761.png

Note that the triangle formed by starts 1, 4 and 3 doesn't satisfy the conditions stated in the problem, as point 5 is not strictly outside of this triangle (it lies on it's border).

题解:这是一道几何题,比赛时不会写,嘿嘿.
思路:把点用结构数组保存起来,来和排序,先排x,x相等再排y,递增排序(因为排序后原来的顺序会打乱,所以要在输入时保存原来的位置).
例如:

0 0
0 2
2 0
2 2
1 1

排完序后为:

0 0
0 2
1 1
2 0
2 2

因为是排完序后的,所以第一个点和第二个点的连线上不会有其他的点.
所以我们只要在剩下的点找一个点,只要不和这两个点在同一条直线上(即不共线),
判断两条线段是否共线可以用向量来判断.例如向量a(x1,y1),向量b为(x2,y2),当x1y2==x2y1时.说明向量共线.共线就不符合.
#include <bits/stdc++.h>
typedef long long ll;
const int N=1e5+5;
using namespace std;
struct point{
    int x,y,po;
}p[N];
bool comp(point a,point b){
    if(a.x<b.x) return true;
    if(a.x>b.x) return false;
    if(a.y<b.y) return true;
    else return false;
}
bool check(int n){
    ll x1=p[0].x-p[1].x;
    ll y1=p[0].y-p[1].y;
    ll x2=p[n].x-p[1].x;
    ll y2=p[n].y-p[1].y;
    if(x1*y2-x2*y1==0) return false;
    return true;
}
int main()
{
    int n;
    scanf("%d",&n);
    for(int i=0;i<n;i++) scanf("%d%d",&p[i].x,&p[i].y),p[i].po=i+1;
    sort(p,p+n,comp);
    //for(int i=0;i<n;i++) printf("%d %d\n",p[i].x,p[i].y);
    //cout << "Hello world!" << endl;
    for(int i=2;i<n;i++)
        if(check(i)){
            printf("%d %d %d\n",p[0].po,p[1].po,p[i].po);
            break;
        }
    return 0;
}

转载于:https://www.cnblogs.com/-yjun/p/10420122.html

内容概要:本文档详细介绍了基于MATLAB实现多目标差分进化(MODE)算法进行无人机三维路径规划的项目实例。项目旨在提升无人机在复杂三维环境中路径规划的精度、实时性、多目标协调处理能力、障碍物避让能力和路径平滑性。通过引入多目标差分进化算法,项目解决了传统路径规划算法在动态环境和多目标优化中的不足,实现了路径长度、飞行安全距离、能耗等多个目标的协调优化。文档涵盖了环境建模、路径编码、多目标优化策略、障碍物检测与避让、路径平滑处理等关键技术模块,并提供了部分MATLAB代码示例。 适合人群:具备一定编程基础,对无人机路径规划和多目标优化算法感兴趣的科研人员、工程师和研究生。 使用场景及目标:①适用于无人机在军事侦察、环境监测、灾害救援、物流运输、城市管理等领域的三维路径规划;②通过多目标差分进化算法,优化路径长度、飞行安全距离、能耗等多目标,提升无人机任务执行效率和安全性;③解决动态环境变化、实时路径调整和复杂障碍物避让等问题。 其他说明:项目采用模块化设计,便于集成不同的优化目标和动态环境因素,支持后续算法升级与功能扩展。通过系统实现和仿真实验验证,项目不仅提升了理论研究的实用价值,还为无人机智能自主飞行提供了技术基础。文档提供了详细的代码示例,有助于读者深入理解和实践该项目。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值