静态:
#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
using namespace std;
#pragma warning(disable : 4996)
const int MAXN = 1005;
typedef struct Node
{
int v;
int next;
}Node;
Node edge[MAXN];
int first[MAXN];
int n, m; //n点数 m边数
void init()
{
int x, y;
memset(first, -1, sizeof(first));
for (int i = 1; i <= m; i++)
{
cin >> x >> y;
edge[i].next = first[x];
edge[i].v = y;
first[x] = i;
}
}
void print()
{
for (int i = 1; i <= n; i++)
{
printf("%d", i);
for (int j = first[i]; j != -1; j = edge[j].next)
{
printf("->%d", edge[j].v);
}
printf("\n");
}
}
int main()
{
while (scanf("%d %d", &n, &m) != EOF)
{
init();
print();
}
return 0;
}
对于重边选取value小的值:
#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
#include <algorithm>
using namespace std;
#pragma warning(disable : 4996)
const int MAXN = 1005;
typedef struct Node
{
int v;//终点位置
int value;//权值
int next;//同一起点下在edge数组中的位置
}Node;
Node edge[MAXN];//邻接表
int first[MAXN];//以该点为起点的第一条边在edge数组中的位置
int n, m; //n点数 m边数
void init()
{
int x, y, value, index;
bool flag;
memset(first, -1, sizeof(first));
index = 1;
for (int i = 1; i <= m; i++)
{
scanf("%d %d %d", &x, &y, &value);
flag = false;
for (int j = first[x]; j != -1; j = edge[j].next)
{
if(y == edge[j].v)
{
if(value < edge[j].value)
{
edge[j].value = value;
}
flag = true;
break;
}
}
if(flag)
{
continue;
}
edge[index].v = y;
edge[index].value = value;
edge[index].next = first[x];
first[x] = index++;
swap(x, y);
edge[index].v = y;
edge[index].value = value;
edge[index].next = first[x];
first[x] = index++;
}
}
void print()
{
for (int i = 1; i <= n; i++)
{
printf("%d", i);
for (int j = first[i]; j != -1; j = edge[j].next)
{
printf("->%d", edge[j].v);
}
printf("\n");
}
}
int main()
{
while (scanf("%d %d", &n, &m) != EOF)
{
if(n == 0 && m == 0)
{
break;
}
init();
print();
}
return 0;
}
可见邻接表与邻接矩阵相比,还是麻烦不少,但在稀疏图,邻接表的威力就显现出来了,毕竟只储存非零节点。
最短路
Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 19979 Accepted Submission(s): 8541
Problem Description
在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt。但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗?
Input
输入包括多组数据。每组数据第一行是两个整数N、M(N<=100,M<=10000),N表示成都的大街上有几个路口,标号为1的路口是商店所在地,标号为N的路口是赛场所在地,M则表示在成都有几条路。N=M=0表示输入结束。接下来M行,每行包括3个整数A,B,C(1<=A,B<=N,1<=C<=1000),表示在路口A与路口B之间有一条路,我们的工作人员需要C分钟的时间走过这条路。
输入保证至少存在1条商店到赛场的路线。
输入保证至少存在1条商店到赛场的路线。
Output
对于每组输入,输出一行,表示工作人员从商店走到赛场的最短时间
Sample Input
2 1
1 2 3
3 3
1 2 5
2 3 5
3 1 2
0 0
Sample Output
3
2
#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
#include <algorithm>
using namespace std;
#pragma warning(disable : 4996)
const int MAXN = 105;
const int INF = 999999;
typedef struct Node
{
int v;//终点位置
int value;//权值
int next;//同一起点下在edge数组中的位置
}Node;
Node edge[10005];//邻接表
int first[MAXN];//以该点为起点的第一条边在edge数组中的位置
int n, m; //n点数 m边数
bool visited[MAXN];
int dist[MAXN];
queue<int>Q;
void init()
{
int x, y, value, index;
bool flag;
memset(first, -1, sizeof(first));
index = 1;
for (int i = 1; i <= m; i++)
{
scanf("%d %d %d", &x, &y, &value);
flag = false;
for (int j = first[x]; j != -1; j = edge[j].next)
{
if(y == edge[j].v)
{
if(value < edge[j].value)
{
edge[j].value = value;
}
flag = true;
break;
}
}
if(flag)
{
continue;
}
edge[index].v = y;
edge[index].value = value;
edge[index].next = first[x];
first[x] = index++;
swap(x, y);
edge[index].v = y;
edge[index].value = value;
edge[index].next = first[x];
first[x] = index++;
}
}
void SPFA(int Start)
{
while (!Q.empty())
{
Q.pop();
}
memset(visited, false, sizeof(visited));
for (int i = 1; i <= n; i++)
{
dist[i] = INF;
}
dist[Start] = 0;
visited[Start] = true;
Q.push(Start);
while (!Q.empty())
{
int top = Q.front();
Q.pop();
visited[top] = false;
for (int i = first[top]; i != -1 ; i = edge[i].next)
{
int e = edge[i].v;
if(dist[e] > edge[i].value + dist[top])
{
dist[e] = edge[i].value + dist[top];
if(!visited[e])
{
Q.push(e);
visited[e] = true;
}
}
}
}
}
int main()
{
freopen("in.txt", "r", stdin);
while (scanf("%d %d", &n, &m) != EOF)
{
if(n == 0 && m == 0)
{
break;
}
init();
SPFA(1);
printf("%d\n", dist[n]);
}
return 0;
}