EXTENDED LIGHTS OUT (高斯消元)

本文探讨了LightsOut游戏的解谜算法,一种基于按钮反转灯状态的益智游戏。文章详细介绍了游戏规则,包括按钮操作如何影响相邻灯的状态,并提出了解决方案,通过编程实现暴力枚举和高斯消元法来找到最少的操作步骤,使所有灯熄灭。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

In an extended version of the game Lights Out, is a puzzle with 5 rows of 6 buttons each (the actual puzzle has 5 rows of 5 buttons each). Each button has a light. When a button is pressed, that button and each of its (up to four) neighbors above, below, right and left, has the state of its light reversed. (If on, the light is turned off; if off, the light is turned on.) Buttons in the corners change the state of 3 buttons; buttons on an edge change the state of 4 buttons and other buttons change the state of 5. For example, if the buttons marked X on the left below were to be pressed,the display would change to the image on the right.

The aim of the game is, starting from any initial set of lights on in the display, to press buttons to get the display to a state where all lights are off. When adjacent buttons are pressed, the action of one button can undo the effect of another. For instance, in the display below, pressing buttons marked X in the left display results in the right display.Note that the buttons in row 2 column 3 and row 2 column 5 both change the state of the button in row 2 column 4,so that, in the end, its state is unchanged.

Note:
1. It does not matter what order the buttons are pressed.
2. If a button is pressed a second time, it exactly cancels the effect of the first press, so no button ever need be pressed more than once.
3. As illustrated in the second diagram, all the lights in the first row may be turned off, by pressing the corresponding buttons in the second row. By repeating this process in each row, all the lights in the first
four rows may be turned out. Similarly, by pressing buttons in columns 2, 3 ?, all lights in the first 5 columns may be turned off.
Write a program to solve the puzzle.
Input
The first line of the input is a positive integer n which is the number of puzzles that follow. Each puzzle will be five lines, each of which has six 0 or 1 separated by one or more spaces. A 0 indicates that the light is off, while a 1 indicates that the light is on initially.
Output
For each puzzle, the output consists of a line with the string: "PUZZLE #m", where m is the index of the puzzle in the input file. Following that line, is a puzzle-like display (in the same format as the input) . In this case, 1's indicate buttons that must be pressed to solve the puzzle, while 0 indicate buttons, which are not pressed. There should be exactly one space between each 0 or 1 in the output puzzle-like display.
Sample Input
2
0 1 1 0 1 0
1 0 0 1 1 1
0 0 1 0 0 1
1 0 0 1 0 1
0 1 1 1 0 0
0 0 1 0 1 0
1 0 1 0 1 1
0 0 1 0 1 1
1 0 1 1 0 0
0 1 0 1 0 0
Sample Output
PUZZLE #1
1 0 1 0 0 1
1 1 0 1 0 1
0 0 1 0 1 1
1 0 0 1 0 0
0 1 0 0 0 0
PUZZLE #2
1 0 0 1 1 1
1 1 0 0 0 0
0 0 0 1 0 0
1 1 0 1 0 1
1 0 1 1 0 1

大佬博客 : https://blog.youkuaiyun.com/FromATP/article/details/53966305

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
using namespace std;
typedef long long lint;
const double PI = acos(-1.0);
const int INF = 1000000000;
const int maxn = 100005;

// 暴力枚举 :
/*
int mp[20][20], cal[20][20], vis[20][20];
int n, m;
int dr[5][2] = { {0,1}, {0,-1}, {1,0}, {-1,0}, {0,0} };
int mi = INF;

int fz(int x, int y)
{
    int t = mp[x][y];
    for(int i = 0; i< 5; i++)
    {
        int xx = x + dr[i][0];
        int  yy = y + dr[i][1];
        if(xx <= n && xx > 0 && yy <= m && yy >0)
            t += vis[xx][yy];
    }
    return t%2;
}

int dfs()
{

        for(int j = 2; j <= n; j++)
            for(int k = 1; k <= m; k++)
        {
            if(fz(j-1, k))  vis[j][k] = 1;
        }
        for(int j = 1; j <= m; j++)
        {
            if(fz(n, j))
            return -1;
        }
        int cnt = 0;
            for(int i = 1; i <= n; i++)
                for(int j = 1; j <= m; j++)
                cnt += vis[i][j];
    return cnt;

}

int main()
{
    ios::sync_with_stdio(false);
    int T;
    cin >> T;
    int ans = 0;
    while(ans++ < T)
    {
        mi = INF;
        n = 5;
        m = 6;
        for(int i = 1; i <=n; i++)
            for(int j = 1; j <=m ; j++)
                cin >> mp[i][j];
        int flag = 0;
        for(int i = 0; i < 1<<m ; i++)
        {
            memset(vis, 0, sizeof(vis));
            for(int j = 1; j <= m; j++)
                vis[1][m-j+1] = i>>(j-1) & 1;


            int cnt  = dfs();
            if(cnt < mi && cnt >= 0)
            {
                flag =1;
                mi = cnt;
                memcpy(cal, vis, sizeof(vis));
            }

        }
        cout << "PUZZLE #" << ans << endl;
        if(flag)
        {
            for(int i = 1; i <=n; i++)
            {
                for(int j = 1; j <= m; j++)
                {
                    if(j != 1) cout << " ";
                     cout << cal[i][j];
                }

                cout << endl;
            }
        }

        else cout << "IMPOSSIBLE" << endl;
        }

    return 0;
}
*/
// 高斯消元法 :

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int n=30;
int tt,a[n+10][n+10];
void gauss()//保证有解
{
    int r;
    for(int i=1;i<=n;i++)
     {
         for(int j=i;j<=n;j++)if(a[j][i]){r=j;break;}
         if(r!=i)for(int j=1;j<=n+1;j++) swap(a[i][j],a[r][j]);
         for(int j=i+1;j<=n;j++)if(a[j][i])
          for(int k=i;k<=n+1;k++)
           a[j][k]^=a[i][k];
     }
    for(int i=n;i>=1;i--)
     for(int j=i+1;j<=n;j++)
      if(a[i][j])a[i][n+1]^=a[j][n+1];
}
int main()
{
    scanf("%d",&tt);
    int t=0;
    while(tt--)
     {
         t++;
         memset(a,0,sizeof(a));
         for(int i=1;i<=n;i++)
         {
             scanf("%d",&a[i][n+1]);
             a[i][i]=1;
             if(i%6!=1)a[i][i-1]=1;
             if(i%6!=0)a[i][i+1]=1;
             if(i>6)a[i][i-6]=1;
             if(i<25)a[i][i+6]=1;
         }
        gauss();
        printf("PUZZLE #%d\n",t);
        for(int i=1;i<=n;i++)
         {
             if(!(i%6))printf("%d\n",a[i][n+1]);
             else printf("%d ",a[i][n+1]);
         }
     }
    return 0;
}

 



转载于:https://www.cnblogs.com/mrh-acmer/p/9490671.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值